Engineering Data

Table of Contents	Page No.	
Formulas, Conversions & Guidelines		
 Equivalents & Conversion Factors Capacity Formulas for Steam Loads Formulas for Control Valve Sizing 	406 407 408-409	
II Steam Properties & Flow Characteristics		
 Properties of Saturated Steam Draining Condensate from Steam Mains or Steam Supply Lines Steam Capacity Tables Steam Flow thru Various Orifice Diameters Sizing Steam Pipes Sizing of Condensate Return Line, Vent Line & Flash Tank Percent Flash Steam Table Pressure Drop in Schedule 40 Pipe 	410 411 412 412 413 414 414 416	
III Fluid Flow in Piping		
 Flow of Water thru Schedule 40 Steel Pipe – Flow Rates, Velocities & Pressure Drops 	417	
IV Pipe, Fitting & Flange Specifications		
 Pipe Data Table (for 1/8" thru 30" sizes) Maximum Allowable Working Pressures for Seamless Carbon Steel Pipe Flange Standards – Dimensional Data Fitting Standards & Specifications Standard Class Pressure-Temperature Ratings 	418 421 422 424 425	

Engineering Data

Table of Contents

Page No.

V	Steam Trap Applications	
	Introduction to Steam Traps	428
	Drip Leg Design	430
	 Process Trap Guidelines – Gravity Drainage 	432
	 Process Trap Guidelines – Syphon Drainage 	434
VI	Regulating Valve Applications	
	General Regulator Application & Installation Notes	436
	 Pressure Reducing Station using Spring-Loaded Pilot 	438
	 Pressure Reducing Station using Air-Loaded Pilot for Remote Installations 	440
	 Pressure Reducing Station – Two-Stage (Series) for High-Pressure Turndown 	442
	 Pressure Reducing Station – Parallel for High-Flow Turndown 	444
	 Pressure Reducing Station – Two-Stage Parallel for High-Pressure & High-Flow Turndown 	446
	 Temperature Control of a Heat Exchanger with Pressure Limiting Pilot 	448
	• Temperature Control of a Batch Process with Electrical Time Sequence Programmer (Solenoid Pilot)	450
	 Temperature Control of a Semi-Instantaneous Heater using a Self-Contained 	452
	Temperature Regulating Valve	
VII	Pressure Motive Pump (PMP) & Pump-Trap Applications	
	 Drainage of a Single Source of Condensate using Pump-Trap 	454
	 Drainage of Condensate from Below Grade using Pump-Trap 	456
	 Drainage of Condensate from Heat Exchanger Positioned Close to the Ground 	458
	Flash Steam Recovery	460
	Removal of Water or Condensate from a Pit	462
VIII	Heat Exchanger Formulas & Example	
	 Formulas for Heat Exchanger System using a Modulating Control Valve 	464

Heat Exchanger Example: Heating Water with Steam using a Modulating Control Valve

466

FORMULAS, CONVERSIONS & GUIDELINES

EQUIVALENTS & CONVERSION FACTORS

Α	В	С	Α	В	С
MULTIPLY	BY	TO OBTAIN	MULTIPLY	BY	TO OBTAIN
Atmospheres	14.697	Pounds per sq. in.	Inches of mercury	1.133	Feet of water
Atmospheres	1.033	Kilograms per sq. cm	Inches of mercury	0.4912	Pounds per sq. in.
Atmospheres	29.92	Inches of mercury	Inches of mercury	0.0345	Kilograms per sq. cm
Atmospheres	760	Millimeters of mercury	Inches of water	0.03613	Pounds per sq. in.
Atmospheres	407	Inches of water	Inches of water	0.07355	Inches of mercury
Atmospheres	33.90	Feet of water	Kilograms	2.205	Pounds
Barrels (petroleum)	42	Gallons	Kilograms	0.001102	Short tons (2000 lbs.)
Barrels per day	0.0292	Gallons per minute	Kilograms per minute	132.3	Pounds per hour
Bars-G	14.5	Pounds per sq. in.	Kilograms per sq. cm	14.22	Pounds per sq. in.
Centimeters	0.3937	Inches	Kilograms per sq. cm	0.9678	Atmospheres
Centimeters	0.03281	Feet	Kilograms per sq. cm	28.96	Inches of mercury
Centimeters	0.01	Meters	Kilopascals	0.145	Pounds per sq. in.
Centimeters	0.01094	Yards	Liters	1000	Cubic centimeters
Cubic centimeters	0.06102	Cubic inches	Liters	0.2642	Gallons
Cubic feet	7.48055	Gallons	Liters per hour	0.0044	Gallons per minute
Cubic feet	0.17812	Barrels	Meters	3.281	Feet
Cubic feet per second	448.833	Gallons per minute	Meters	1.0936	Yards
Cubic inches	16.39	Cubic centimeters	Meters	100	Centimeters
Cubic inches	0.004329	Gallons	Meters	39.37	Inches
Cubic meters	264.17	Gallons	Megapascals	145.0	Pounds per sq. in.
Cubic meters per hour	4.40	Gallons per minute	Pounds	0.0005	Short tons (2000 lbs.)
Feet	0.3048	Meters	Pounds	0.4536	Kilograms
Feet	0.3333	Yards	Pounds	0.000454	Metric Tons
Feet	30.48	Centimeters	Pounds	16	Ounces
Feet of water	0.882	Inches of mercury	Pounds per hour	6.32/M.W.	Cubic feet per minute
Feet of water	0.433	Pounds per sq. in.	Pounds per hour liquid	0.002/Sp. Gr.	Gallons per minute liquid (at 70°F)
Gallons (U.S.)	3785	Cubic centimeters	Pounds per sq. in.	27.684	Inches of water
Gallons (U.S.)	0.13368	Cubic feet	Pounds per sq. in.	2.307	Feet of water
Gallons (U.S.)	231	Cubic inches	Pounds per sq. in.	2.036	Inches of mercury
Gallons (Imperial)	277.4	Cubic inches	Pounds per sq. in.	0.0703	Kilograms per sq. cm
Gallons (U.S.)	0.833	Gallons (Imperial)	Pounds per sq. in.	51.71	Millimeters of mercury
Gallons (U.S.)	3.785	Liters	Pounds per sq. in.	0.7037	Meters of water
Gallons of water	8.328	Pounds (at 70°F) Pounds per hr	Specific Gravity	28.97	Molecular Wt.
Gallons of liquid per minute	500 x Sp. Gr.	liquid (at 70°F)	(of gas or vapors)	0.1550	(of gas or vapors)
Gallons per minute	0.002228	Cubic feet per second	Square centimeters	0.1550	Square inches
Horsepower (boiler)	34.5	Pounds water per hr. evaporation	Square inches Tons (short ton 2000 lbs.)	6.452 907.2	Square centimeters Kilograms
Horsepower (boiler)	33479	Btu per hour	Tons (short ton 2000 lbs.)	0.9072	Metric Tons
Inches	2.54	Centimeters	Tons (metric) per day	91.8	Pounds per hour
Inches	0.0833	Feet	Water (cubic feet)	62.3	Pounds (at 70°F)
Inches	0.0254	Meters	Yards	0.9144	Meters
Inches	0.02778	Yards	Yards	91.44	Centimeters

This table may be used in two ways:

(1) Multiply the unit under column A by the figure under column B; the result is the unit under column C.

(2) Divide the unit under column C by the figure under column B; the result is the unit under column A.

FORMULAS, CONVERSIONS & GUIDELINES

CAPACITY FORMULAS FOR STEAM LOADS

Definition of Terms and Units:

Qs = Steam Load or Steam Capacity (lbs/hr)	LH = Latent Heat of Saturated Steam (Btu/lb)						
	s.g. = Specific gravity of fluid						
E = Heat Load (Btu/hr) m = Amount of water to cool per time (lbs/hr)	Q _w = Flow rate of water (GPM)						
	Q _L = Flow rate of liquid (GPM)						
C _P = Specific Heat of fluid being heated (Btu/(lb-°F))	Q _{air} = Flow rate of air (CFM or ft ³ /min)						
C _{P1} = Specific heat of solid being heated (Btu/(lb-°F))	G = Volume of liquid to be heated (gallons)						
ΔT = Temperature rise (°F)	t = Time to heat product (hours)						
ΔT ₁ = Condensate Temp Temp. Set Point (°F)							
ΔT_2 = Temperature difference (°F)	W = Weight of material (lbs)						
and the second	p _{air} = Density of air (lb/ft ³)						
(Temp. set point - temp. of cooling water)	500 = 60 min/hr x 8.33 lbs/gal (convert GPM of water to lbs/hr)						

APPROXIMATE FORMULAS

EXACT FORMULAS

 $Q_s = Q_w \times \Delta T \times 500$

When Heating Water with Steam

$$Q_{S} = \frac{Q_{W}}{2} \times \Delta T$$

When Heating Fuel Oil with Steam

 $Q_S = \frac{Q_L}{4} \times \Delta T$

When Heating Air Coils with Steam

$$Q_S = \frac{Q_{air}}{900} \times \Delta T$$

When Heat Load (Btu/hr) is Known

$$Q_{S} = \frac{E}{1000}$$

$$Q_{s} = \frac{Q_{L} \times \Delta T \times C_{p} \times 500 \times s.g.}{LH}$$

$$Q_{S} = \frac{Q_{air} \times 0.24 \times p_{air} \times 60(min/hr) \times \Delta T}{LH}$$

When Boiler Output (H.P.) is Known Q _s = Boiler H.P. x 34.5	Heating Water in Open-Top Tank with Direct Steam Injecti Q _s = <u>G x ΔT x 8.33 (Ibs/gal)</u> LH x t								
When Square Feet Equivalent Direct Radiation (EDR) is Known Q _s = <u>EDR</u> 4	Heating Liquid in Jacketed Kettles Q _S = <u>G x s.g. x C_P x ΔT x 8.33 (Ibs/gal)</u> LH x t								
Condensate Cooling using WaterStep 1: $E = m\Delta T_1$ Step 2: $Q_S = E/\Delta T_2$ Step 3:Water required: $Q_W(GPM) = Q_S/500$	Heating Solids by Direct Steam Injection into Chamber (Platens, Autoclaves, etc.) $Q_{S} = \frac{W \times C_{p1} \times \Delta T}{LH \times t}$								

FORMULAS, CONVERSIONS & GUIDELINES

FORMULAS FOR CONTROL VALVE SIZING FOR LIQUIDS

The following formulas for Control Valve Sizing assume turbulent flow based on liquids similar in viscosity to water, and pipe sizes equal to the size of the valve ports, with no attached fittings.

C_v = Valve Flow Coefficient

- **Q** = Volumetric Flow Rate of Liquid (US GPM)
- **P**₁ = Absolute Inlet Pressure (psia)
- P_2 = Absolute Outlet Pressure (psia)
- $\Delta \mathbf{P}$ = Pressure Drop (psi) = **P**₁ **P**₂
- G = Specific Gravity of the Liquid
- $\mathbf{P}_{\mathbf{v}}$ = Vapor Pressure of the Liquid

For Normal Flow:

When: $\Delta P < K_{c} (P_{1} - P_{v})$:

$$\mathbf{Q} = \mathbf{Q} \sqrt{\frac{\Delta \mathbf{P}}{\mathbf{G}}} \quad \text{Flow Rate based on } \mathbf{C}_{v} \text{ and } \Delta \mathbf{P}.$$
$$\mathbf{C}_{v} = \mathbf{Q} \sqrt{\frac{\mathbf{G}}{\Delta \mathbf{P}}} \quad \mathbf{C}_{v} \text{ required based on Flow Rate and } \Delta \mathbf{P}.$$

 $\Delta \mathbf{P} = \left[\frac{\mathbf{Q}}{\mathbf{C}_{v}}\right]^{2} \mathbf{G} \quad \begin{array}{l} \text{Pressure drop across valve based} \\ \text{on Flow Rate and } \mathbf{C}_{v}. \end{array}$

Potential for Cavitation

Cavitation can occur when the pressure inside the control valve drops below the vapor pressure (P_v) of the liquid. Cavitation should be avoided because it restricts flow rate, generates noise and may reduce life expectancy of internal components. When $\Delta P < K_c (P_1 - P_v)$, the Standard Flow Equation will predict performance. When $\Delta P \geq K_c (P_1 - P_v)$, cavitation may occur and the accuracy of the normal flow equation may be reduced.

- \mathbf{F}_{L} = The Valve Pressure Recovery Factor. For Globe Style Control Valve. \mathbf{F}_{L} = 0.9
- $K_c = 0.65 F_L^2$ Based on when a 2% reduction of normal flow rate occurs. (0.65 proportionality conconstant is used for conservative determination of cavitation)
- P_v = Vapor Pressure of the Liquid (psia). (see chart for water at various temperatures.)

Valve Sizing Example:

A control valve is needed that will handle a maximum flow rate of 100 GPM of water @ 180° F. Since the temperature of the water is elevated, cavitation becomes a concern. Determine the maximum pressure drop across the control valve before cavitation will occur. Based on this maximum pressure drop, determine the required minimum C_v value of the control valve.

Conditions of Service:

$$P = 50 \text{ psig} = 64.7$$

(1) To Determine the ΔP across the valve when cavitation could potentially occur, use the formula $\Delta P_c = K_c (P_1 - P_v)$.

Δ**P**_c = **K**_c (**P**₁ - **P**_V) = 0.53 (64.7-7.51) = **30** psi

K_c = 0.65
$$F_{L}^{2} = 0.65 (0.9)^{2} = 0.53$$

(for globe value)
P_v = 7.51 @ 180°F for water
(see chart)

(2) Determine the minimum C_v of the control valve at the maximum ΔP of 30 psi.

$$C_{v} = Q \sqrt{\frac{G}{\Delta P}}$$
$$= 100 \sqrt{\frac{0.972}{30}}$$
$$= 18$$

Water	Water Physical Properties											
Temp. (°F)	G (Ref. to 60°F)	P _v (psia)										
32	1.001	0.09										
40	1.001	0.12										
50	1.001	0.18										
60	1.000	0.26										
70	0.999	0.36										
80	0.998	0.51										
90	0.996	0.70										
100	0.994	0.95										
120	0.990	1.69										
140	0.985	2.89										
160	0.979	4.74										
180	0.972	7.51										
200	0.964	11.5										
212	0.959	14.7										

NOTE: Since a minimum C_v of 18 was calculated, we could choose a 1-1/2" HB globe style control valve which has a $C_v = 22$.

	2
	~
	- 7
	_
	2
F	-7

FORMULAS FOR VALVE SIZING

Control Valve Sizing for Saturated Steam

The following formulas for Valve Sizing are based on ISA Standard 75.01.01-2007 (60534-2-1 Mod). The formulas assume pipe sizes equal to the size of the valve ports, with no attached fittings.

Cv = Valve Flow Coefficient

- $\Delta \mathbf{P}$ = Pressure Drop = P₁ P₂
- **P**₁ = Absolute Inlet Pressure (psia)
- **P**₂ = Absolute Outlet Pressure (psia)
- **W** = Saturated Steam Flow (lbs/hr)
- T₁ = Steam Inlet Temperature (°R) (see table)

 $82 P_1 (1 - x/3x_{cr}) - \sqrt{x/(T_1 Z_1)}$

When $\Delta \mathbf{P}/\mathbf{P}_1 < \boldsymbol{x}_{cr}$: $\boldsymbol{x} = \Delta \mathbf{P}/\mathbf{P}_1$

Z₁ = Steam Compressibility Factor (see table)

 γ = Heat Capacity Ratio for Steam = 1.3 (0-300 psig)

- F_{γ} = Heat Capacity Ratio Factor for Steam = $\gamma/1.4 = 1.3/1.4 = 0.93$
- \boldsymbol{x} = Pressure Drop Ratio = $\Delta P/P_1$
- $\Delta \mathbf{P}_{cr} = \text{Critical Pressure Drop}$
- x_T = Critical Pressure Drop Ratio for Air
- \boldsymbol{x}_{cr} = Critical Pressure Drop Ratio for Steam
 - $= \Delta \mathbf{P}_{cr} / \mathbf{P}_1 = \mathbf{F}_{\gamma} \boldsymbol{x}_T = 0.93 \boldsymbol{x}_T$

Cv = _____

For Critical Flow

$$Cv = \frac{W}{54.6 P_1 - \sqrt{x_{cr} / (T_1 Z_1)}}$$
When $\Delta P/P_1 \ge x_{cr}$

For single-ported globe valve with flow-to-open seating arrangement:

$$x_T = 0.72$$
 $x_{cr} = 0.93 x_T = 0.67$
 $Cv = \frac{W}{82 P_1 (1 - x/2) \sqrt{x/(T_1 Z_1)}}$

$$Cv = \frac{W}{54.6 P_1 \sqrt{0.67/(T_1 Z_1)}}$$

When $\Delta P/P_1 < 0.67$

When
$$\Delta \mathbf{P}/\mathbf{P}_1 \ge 0.67$$

Example: Determine the Cv Value for a Control Valve with 60 psig Inlet Steam Pressure, and 30 psig Outlet Pressure with a Flow Rate of 4,000 lbs/hr.

 $Cv = \frac{W}{82 P_1 (1 - x/2) - \sqrt{x/(T_1 Z_1)}}$ When $\Delta P/P_1 < 0.67$ $Cv = \frac{4,000}{1}$

$$82 (74.7)(1 - 0.4/2) - \sqrt{0.4/(767 \times 0.955)}$$
$$= \frac{4,000}{114.6} = 35$$

Saturated Steam Table												
P ₁ psig	P ₁ psia	T ₁ (°R)	Z 1									
0	14.7	672	0.985									
10	24.7	699	0.978									
20	34.7	718	0.973									
30	44.7	734	0.968									
40	54.7	746	0.963									
50	64.7	757	0.959									
60	74.7	767	0.955									
70	84.7	776	0.951									
80	94.7	784	0.947									
90	104.7	791	0.943									
100	114.7	798	0.940									
110	124.7	804	0.936									
120	134.7	810	0.933									
130	144.7	815	0.930									
140	154.7	821	0.927									
150	164.7	826	0.923									
160	174.7	830	0.920									
170	184.7	835	0.917									
180	194.7	839	0.915									
190	204.7	843	0.912									
200	214.7	848	0.909									
210	224.7	851	0.906									
220	234.7	855	0.903									
230	244.7	859	0.901									
240	254.7	862	0.898									
250	264.7	866	0.895									
260	274.7	869	0.893									
270	284.7	872	0.890									
280	294.7	875	0.888									
290	304.7	879	0.885									
300	314.7	882	0.883									

Properties of Saturated Steam

Pressure	Temp.		Heat (BTU/lb)		Volume	e (ft ³ /lb)							
in He yes	(°F)	Sensible	Latent	Total	Condensate	Steam	(contii	_					
in Hg vac 25	133	101	1018	1119	0.01626	143.3	Pressure	Temp.		Heat (BTU/lb)			e (ff ³ /lb)
20	161	129	1018	1131	0.01620	75.41	(PSIG)	(°F)	Sensible	Latent	Total	Condensate	Steam
15	179	147	991	1131	0.01650	51.41	150	366	339	857	1196	0.01818	2.756
10	192	160	983	1143	0.01659	39.22	155	368	341	855	1196	0.01821	2.678
5	203	171	976	1140	0.01666	31.82	160	371	344	853	1196	0.01824	2.605
(PSIG)	200	171	570	1147	0.01000	01.02	165	373	346	851	1197	0.01827	2.535
0	212	180	970	1151	0.01672	26.80	170	375	349	849	1197	0.01830	2.469
1	215	184	968	1152	0.01672	25.21	175	377	351	847	1198	0.01833	2.407
2	219	187	966	1153	0.01676	23.79	180	380	353	845	1198	0.01835	2.347
3	222	190	964	1154	0.01679	22.53	185	382	355	843	1198	0.01839	2.291
4	224	193	962	1155	0.01681	21.40	190	384	358	841	1199	0.01841	2.237
5	227	195	961	1156	0.01683	20.38	195	386	360	839	1199	0.01844	2.185
6	230	198	959	1157	0.01685	19.46	200	388	362	837	1199	0.01847	2.136
7	232	201	957	1158	0.01687	18.62	205	390	364	836	1200	0.01850	2.089
8	235	203	956	1159	0.01689	17.85	210	392	366	834	1200	0.01852	2.044
9	237	206	954	1160	0.01690	17.14	215	394	368	832	1200	0.01855	2.001
10	239	208	953	1160	0.01692	16.49	220	395	370	830	1200	0.01857	1.960
12	244	212	950	1162	0.01696	15.33	225	397	372	829	1201	0.01860	1.920
14	248	216	947	1163	0.01699	14.33	230	399	374	827	1201	0.01863	1.882
16	252	220	944	1165	0.01702	13.45	235	401	376	825	1201	0.01865	1.845
18	255	224	942	1166	0.01705	12.68	240	403	378	823	1201	0.01868	1.810
20	259	228	940	1167	0.01708	11.99	245	404	380	822	1202	0.01870	1.776
22	262	231	937	1168	0.01711	11.38	250	406	382	820	1202	0.01873	1.744
24	265	234	935	1169	0.01713	10.83	255	408	384	818	1202	0.01875	1.712
25	267	236	934	1170	0.01715	10.57	260	409	385	817	1202	0.01878	1.682
26	268	237	933	1170	0.01716	10.33	265	411	387	815	1202	0.01880	1.652
28	271	240	931	1171	0.01719	9.874	270	413 414	389	814	1203	0.01882	1.624 1.596
30	274	243	929	1172	0.01721	9.459	275 280		391 392	812 811	1203 1203	0.01885	1.596
32	277	246	927	1173	0.01723	9.078	280	416	392	809	1203	0.01887 0.01889	1.570
34	279	249	925	1174	0.01726	8.728	205	417 419	394	809	1203	0.01889	1.544
35	281	250	924	1174	0.01727	8.563	290	419	396	808	1203	0.01891	1.497
36	282	251	923	1174	0.01728	8.404			397	805	1203	0.01894	1.497
38	284	254	922	1175	0.01730	8.104	300 310	422 425	402	805	1203	0.01898	1.473
40	287	256	920	1176	0.01733	7.826	320	423	402	799	1204	0.01901	1.386
42	289	258	918	1177	0.01735	7.566	320	420	403	799	1204	0.01900	1.346
44	291	261	916	1177	0.01737	7.323	340	430	408	790	1204	0.01910	1.340
45	292	262	916	1178	0.01738	7.208	350	436	411	790	1204	0.01913	1.273
46	294	263	915	1178	0.01739	7.096	360	438	414	790	1204	0.01919	1.273
48	296	265	913	1178	0.01741	6.883	370	430	417	785	1204	0.01923	1.240
50	298	267	912	1179	0.01743	6.683	380	443	420	782	1204	0.01927	1.177
55	303	272	908	1180	0.01748	6.230	390	446	425	779	1205	0.01932	1.148
60	307	277	905	1182	0.01753	5.837	400	440	426	777	1205	0.01936	1.140
65	312	282	901	1183	0.01757	5.491	400	440	420	764	1205	0.01940	0.9992
70	316	286	898	1184	0.01761	5.184	500	400	441	752	1205	0.01981	0.9992
75	320	291	895	1185	0.01766	4.911	550	470	453	732	1205	0.01980	0.8195
80	324	295	892	1186	0.01770	4.665	600	480	404	740	1204	0.02000	0.7509
85	328	298	889	1187	0.01774	4.444	650	409	475	729	1203	0.02019	0.6922
90	331	302	886	1188	0.01778	4.242	700	497 505	485	718	1203	0.02038	0.6922
95	335	306	883	1189	0.01782	4.059	750	513	494 504	697	1202	0.02038	0.5971
100	338	309	881	1190	0.01785	3.891	800	520	512	687	1199	0.02074	0.5580
105	341	312	878	1190	0.01789	3.736	900	520	529	667	1199	0.02092	0.3380
110	344	316	876	1191	0.01792	3.594	1000	546	545	648	1190	0.02128	0.4922
115	347	319	873	1192	0.01796	3.462	1250	574	581	601	1182	0.02164	0.4390
120	350	322	871	1192	0.01799	3.340	1250	598	614	556	1162	0.02256	0.3410
125	353	325	868	1193	0.01803	3.226	1750	618	644	510	1155	0.02352	0.2740
130	356	328	866	1194	0.01806	3.119	2000	637	674	463	1135	0.02456	0.2246
135	358	331	864	1194	0.01809	3.020	2000	654	703	403	1137	0.02572	0.1664
140	361	333	861	1195	0.01812	2.927	2500	669	703	358	1092	0.02707	0.1354
145	363	336	859	1195	0.01815	2.839	2750	683	766	295	1092	0.02871	0.1293
							2100	000	700	235	1001	0.00097	0.1002

Warm Up Loads are based

DRAINING CONDENSATE FROM STEAM MAINS OR STEAM SUPPLY LINES

Charts Assume All Pipes are Insulated (with 80% efficiency)

Warm U	p Loads	in Pou	nds of	Conde	nsate p	er hou	r per 10	0 ft. of	Steam	Main		on a	1 hour	warm (up time
Outside T	emperatı	ıre at 70	°F. Base	ed on Sc	h. 40 P	ipe up to	250 PS	l; Sch. 8	0 above	250 PSI	; Sch. 1	20, 5″ 8	& Larger,	above	800 PSI.
Steam Pressure (PSIG)	2″	2 ¹ /2″	3″	4″	5″	6″	Pipe 8"	Size 10″	12″	14″	16″	18″	20″	24″	0°F Correction Factor †
0	_	9.7	12.8	18.2	24.6	31.9	48	68	90	107	140	176	207	308	1.50
-	6.2														
5	6.9	11.0	14.4	20.4	27.7	35.9	48	77	101	120	157	198	233	324	1.44
10	7.5	11.8	15.5	22.0	29.9	38.8	58	83	109	130	169	213	251	350	1.41
20	8.4	13.4	17.5	24.9	33.8	44	66	93	124	146	191	241	284	396	1.37
40	9.9	15.8	20.6	90.3	39.7	52	78	110	145	172	225	284	334	465	1.32
60	11.0	17.5	22.9	32.6	44	57	86	122	162	192	250	316	372	518	1.29
80	12.0	19.0	24.9	35.3	48	62	93	132	175	208	271	342	403	561	1.27
100	12.8	20.3	26.6	37.8	51	67	100	142	188	222	290	366	431	600	1.26
125	13.7	21.7	28.4	40	55	71	107	152	200	238	310	391	461	642	1.25
150	14.5	23.0	30.0	43	58	75	113	160	212	251	328	414	487	679	1.24
175	15.3	24.2	31.7	45	61	79	119	169	224	265	347	437	514	716	1.23
200	16.0	25.3	33.1	47	64	83	125	177	234	277	362	456	537	748	1.22
250	17.2	27.3	35.8	51	69	89	134	191	252	299	390	492	579	807	1.21
300	25.0	38.3	51	75	104	143	217	322	443	531	682	854	1045	1182	1.20
400	27.8	43	57	83	116	159	241	358	493	590	759	971	1163	1650	1.18
500	30.2	46	62	91	126	173	262	389	535	642	825	1033	1263	1793	1.17
600	32.7	50	67	98	136	187	284	421	579	694	893	1118	1367	1939	1.16
800	38	58	77	113	203	274	455	670	943	1132	1445	1835	2227	3227	1.16
1000	45	64	86	126	227	305	508	748	1052	1263	1612	2047	2485	3601	1.15
1200	52	72	96	140	253	340	566	833	1172	1407	1796	2280	2767	4010	1.14
1400	62	79	106	155	280	376	626	922	1297	1558	1988	2524	3064	4440	1.13
1600	71	87	117	171	309	415	692	1018	1432	1720	2194	2786	3382	4901	1.13
1750	78	94	126	184	333	448	746	1098	1544	1855	2367	3006	3648	5285	1.13
1800	80	97	129	189	341	459	764	1125	1584	1902	2427	3082	3741	5420	1.13

Running Loads in Pounds of Condensate per hour per 100 ft. of Steam Main

Outside T	emperatu	ıre at 70	°F.												
Steam Pressure							Pipe	Size							0°F Correction
(PSIG)	2″	2 ¹ /2″	3″	4″	5″	6″	8″	10″	12″	14″	16″	18″	20″	24″	Factor †
10	6	7	9	11	13	16	20	24	29	32	36	39	44	53	1.58
30	8	9	11	14	17	20	26	32	38	42	48	51	57	68	1.50
60	10	12	14	18	24	27	33	41	49	54	62	67	74	89	1.45
100	12	15	18	22	28	33	41	51	61	67	77	83	93	111	1.41
125	13	16	20	24	30	36	45	56	66	73	84	90	101	121	1.39
175	16	19	23	26	33	43	53	66	78	86	98	107	119	141	1.38
250	18	22	27	34	42	50	62	77	92	101	116	126	140	168	1.36
300	20	25	30	37	46	54	68	85	101	111	126	138	154	184	1.35
400	23	28	34	43	53	63	80	99	118	130	148	162	180	216	1.33
500	27	33	39	49	61	73	91	114	135	148	170	185	206	246	1.32
600	30	37	44	55	68	82	103	128	152	167	191	208	232	277	1.31
800	36	44	53	69	85	101	131	164	194	214	244	274	305	365	1.30
1000	43	52	63	82	101	120	156	195	231	254	290	326	363	435	1.27
1200	51	62	75	97	119	142	185	230	274	301	343	386	430	515	1.26
1400	60	73	89	114	141	168	219	273	324	356	407	457	509	610	1.25
1600	69	85	103	132	163	195	253	31	375	412	470	528	588	704	1.22
1750	76	93	113	145	179	213	278	347	411	452	516	580	645	773	1.22
1800	79	96	117	150	185	221	288	358	425	467	534	600	667	800	1.21

[†] For outdoor temperatures of 0°F, multiply load value selected from table by correction factor shown.

STEAM CAPACITY TABLES

This chart provides a simple method for sizing steam pipes with velocities in the range of 7,000 to 10,000 ft/min. (Example: a 1" pipe with 100 PSIG steam pressure has a flow rate of 672 lbs/hr at a velocity of 7250 ft/min.)

STEAM CAPACITY - Flow in lbs/hr																		
	Tomp	1.	0.	1.	2.	_		-1-			VE or PIP			_				
Pressure (PSIG)	Temp. (°F)	1/4	3/8	1/2	3/4	1	11/4	1 ¹ /2	2	2 ¹ /2	3	31/2	4	5	6	8	10	12
(1310)	(sat.)	7062	7094	7125	7187	7250	7312	7375	7500	VELOCI 7625	TY (FPM) 7750	7875	8000	8250	8500	9000	9500	10000
250	406	176	324	518	916	1498	2615	3591	6018	8731	13700				58730		179200	267700
												18620	24360	39470		107700		
200	388	143	264	423	748	1223	2135	2932	4913	7128	11190	15200	19880	32230	47950	87910	146300	218500
175	378	127	235	375	664	1086	1895	2603	4361	6328	9931	13490	17650	28610	42560	78040	129800	194000
150	366	111	205	328	580	948	1655	2273	3810	5528	8675	11790	15420	24990	37180	68170	113400	169500
125	353	95	175	280	496	811	1415	1943	3256	4724	7414	10070	13180	21360	31780	58260	96940	144800
100	338	79	145	232	411	672	1173	1612	2701	3919	6150	8356	10930	17720	26360	48330	80410	120100
90	331	72	133	213	377	617	1076	1478	2477	3594	5641	7665	10030	16250	24180	44330	73760	110200
80	324	66	121	194	343	561	979	1345	2254	3270	5132	6973	9122	14780	22000	40330	67100	100300
70	316	59	109	175	309	505	881	1211	2029	2943	4619	6277	8211	13310	19800	36300	60400	90240
60	308	53	97	155	274	449	783	1076	1803	2616	4105	5577	7296	11820	17590	32260	53670	80190
50	298	46	85	136	240	392	684	940	1575	2286	3587	4874	6376	10330	15380	28190	46900	70080
40	287	39	72	116	205	335	585	803	1346	1953	3066	4166	5449	8831	13140	24090	40080	59890
30	274	33	60	96	170	278	485	666	1115	1618	2539	3451	4514	7315	10880	19960	33200	49610
25	267	29	54	86	152	249	434	596	999	1449	2274	3090	4042	6551	9747	17870	29730	44430
20	259	26	47	76	134	219	383	526	881	1279	2006	2726	3566	5780	8600	15770	26230	39200
15	250	22	41	66	116	190	331	455	763	1107	1737	2360	3087	5003	7444	13650	22710	33930
10	240	19	35	55	98	160	279	384	643	933	1464	1990	2603	4218	6276	11510	19150	28610
5	228	15	28	45	79	130	227	311	522	757	1188	1615	2112	3423	5093	9339	15540	23220
0	212	11	21	34	60	97	170	233	391	568	891	1210	1583	2566	3818	7000	11650	17400

This table represents steam loss thru an orifice on a failed open steam trap, assuming that 25% of the flow consists of condensate.

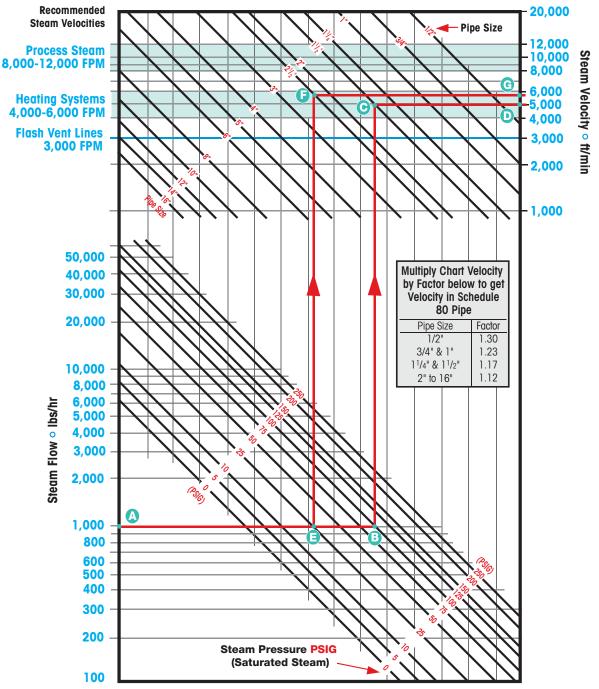
STEAM FLOW	- thru ve	arious o	rifice di	ameters	discha	rging to	atmosp	here (0	PSIG) ir	n Ibs/hr			
Orifice Diameter						Inlet Pr	essure (P	SIG)					
(Inches)	2	5	10	15	25	50	75	100	125	150	200	250	300
1/32	0.31	0.47	0.58	0.70	0.94	1.53	2.12	2.70	3.30	3.90	5.10	6.30	7.40
1/16	1.25	1.86	2.30	2.80	3.80	6.10	8.50	10.80	13.20	15.60	20.30	25.10	29.80
3/32	2.81	4.20	5.30	6.30	8.45	13.80	19.10	24.40	29.70	35.10	45.70	56.40	67.00
1/8	4.50	7.50	7.40	11.20	15.00	24.50	34.00	43.40	52.90	62.40	81.30	100.00	119.00
5/32	7.80	11.70	14.60	17.60	23.50	38.30	53.10	67.90	82.70	97.40	127.00	156.00	186.00
3/16	11.20	16.70	21.00	25.30	33.80	55.10	76.40	97.70	119.00	140.00	183.00	226.00	268.00
7/32	15.30	22.90	28.70	34.40	46.00	75.00	104.00	133.00	162.00	191.00	249.00	307.00	365.00
1/4	20.00	29.80	37.40	45.00	60.10	98.00	136.00	173.00	212.00	250.00	325.00	401.00	477.00
9/32	25.20	37.80	47.40	56.90	76.10	124.00	172.00	220.00	268.00	316.00	412.00	507.00	603.00
5/16	31.20	46.60	58.50	70.30	94.00	153.00	212.00	272.00	331.00	390.00	508.00	627.00	745.00
11/32	37.70	56.40	70.70	85.10	114.00	185.00	257.00	329.00	400.00	472.00	615.00	758.00	901.00
3/8	44.90	67.10	84.20	101.00	135.00	221.00	306.00	391.00	478.00	561.00	732.00	902.00	1073.00
13/32	52.70	78.80	98.80	119.00	159.00	259.00	359.00	459.00	559.00	659.00	859.00	1059.00	1259.00
7/16	61.10	91.40	115.00	138.00	184.00	300.00	416.00	532.00	648.00	764.00	996.00	1228.00	1460.00
15/32	70.20	105.00	131.00	158.00	211.00	344.00	478.00	611.00	744.00	877.00	1144.00	1410.00	1676.00
1/2	79.80	119.00	150.00	180.00	241.00	392.00	544.00	695.00	847.00	998.00	1301.00	1604.00	1907.00

SIZING STEAM PIPES • Steam Velocity Chart (Schedule 40 pipe)

Saturated steam lines should be sized for a steam velocity of 4800 to 7200 ft/min.

Piping on pressure reducing stations should be sized for the same steam velocity on both sides of the regulator. This usually results in having a regulator smaller than the piping and having larger piping on the downstream side of the regulator.

Example using Steam Velocity Chart:


100 PSIG Inlet Pressure to control valve; 25 PSIG Outlet Pressure; 1,000 lbs/hr flow rate; Determine pipe size required.

Upstream Piping:

Enter Velocity Chart at (A) 1000 lbs/hr. Follow line to (B) 100 PSIG Inlet Pressure. Follow line vertically upwards to $(0, 1^{1})^{2^{n}}$ Pipe Diameter. Steam Velocity at (D) shows 4800 ft/min.

Downstream Piping:

Enter Velocity Chart at (A)1000 lbs/hr. Follow line to (E) 25 PSIG Outlet Pressure. Follow line vertically upwards to (E) $2^{1}/2^{"}$ Pipe Diameter. Steam Velocity at (G) shows 5500 ft/min.

Note: Condensate Line & Vent Line Size based on using Schedule 40 Pipe

SIZING OF CONDENSATE RETURN LINE, FLASH TANK DIAMETER & VENT LINE

- Velocity of Flash Steam in Condensate Return Lines should be between 4000 and 6000 ff/min.
- Velocity in Flash Tank should be less than 600 ft/min.
- Velocity in a Vent Pipe should be less than 4000 ft/min.

Example: A steam trap with a 150 PSIG steam inlet pressure is being discharged into a flash tank operating at 20 PSIG. The condensate load on the trap is 3200 lbs/hr.

Problem:

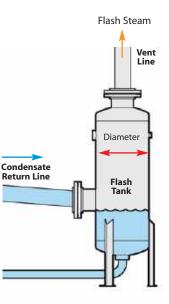
- (1) Determine the size of the condensate return line from the trap to the flash tank based on velocities of 4,000 6,000 ft/min.
- (2) Determine the diameter of the flash tank based on velocities less than 600 ft/min.
- (3) Determine the size of the vent line on the flash tank based on velocities less than 4000 ft/min.

Solution:

The accepted practice of determining condensate return pipe sizing is to base the size of the return pipe on the amount of flash steam in the return line. This is due to the fact that the volume of flash steam is over 1,000 times greater than the equivalent volume of liquid condensate. Therefore, the flash steam is the dominant factor affecting flow in the return line. We must first calculate the amount of flash steam produced.

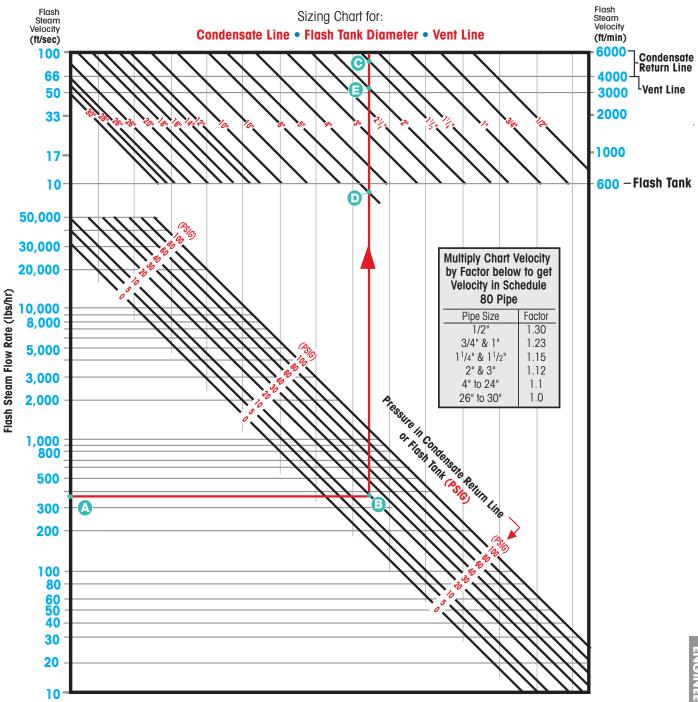
From the **Percent Flash Steam Table** we find that 11.8% of the condensate will flash into steam. Therefore .118 X 3200 = 377 lbs/hr of flash steam will be produced in the condensate return line and flash tank.

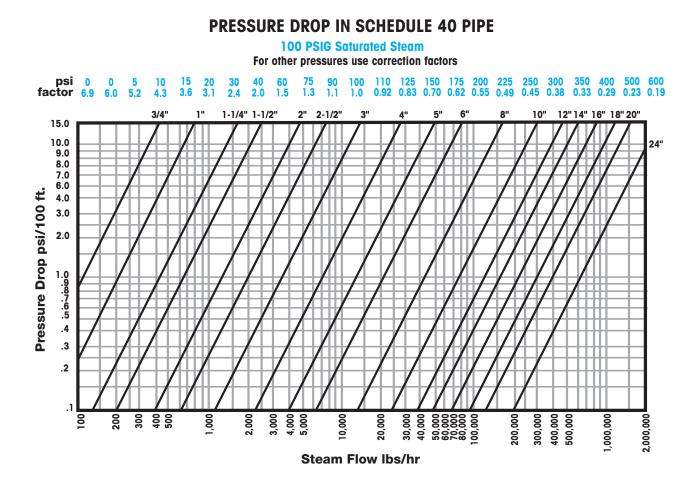
Enter Condensate Line, Flash Tank & Vent Line Sizing chart at (A) 377 lbs/hr.


Move horizontally to point **B** 20 PSIG Flash Tank Pressure.

Move vertically upwards to point () to determine a 5" Flash Tank Diameter is needed to keep velocities less than 600 ft/min.

Continue to move vertically to point () to determine that the Vent Line on the Flash Tank should be 2" Diameter in order to keep velocities less than 4,000 ft/min.


Continue to move vertically to point () to determine that the **Condensate Line should be** 1¹/2" **Diameter** in order to maintain condensate return line velocities between 4000 and 6000 ff/min.


(0 2316) 01	into a flo			condens led at va			ed to atn	nospher	е
Condensate			Flas	h Tank Pro	essure (I	PSIG)			
Pressure (PSIG)	0	5	10	20	30	40	60	80	100
5	1.6	0.0							
10	2.9	1.3	0.0						
15	3.9	2.4	1.1						
20	4.9	3.3	2.1	0.0					
30	6.5	5.0	3.7	1.7	0.0				
40	7.8	6.3	5.1	3.0	1.4	0.0			
60	10.0	8.5	7.3	5.3	3.7	2.3	0.0		
80	11.8	10.3	9.1	7.1	5.5	4.2	1.9	0.0	
100	13.3	11.8	10.6	8.7	7.1	5.8	3.5	1.6	0.0
125	14.9	13.5	12.3	10.4	8.8	7.5	5.3	3.4	1.8
(150)	16.3	14.9	13.7	(11.8)	10.3	9.0	6.8	4.9	3.3
200	18.7	17.3	16.2	14.3	12.8	11.5	9.4	7.6	6.0
250	20.8	19.4	18.2	16.4	14.9	13.7	11.5	9.8	8.2
300	22.5	21.2	20.0	18.2	16.8	15.5	13.4	11.7	10.2
350	24.1	22.8	21.7	19.9	18.4	17.2	15.1	13.4	11.9
400	25.6	24.2	23.1	21.4	19.9	18.7	16.7	15.0	13.5

SIZING OF CONDENSATE RETURN LINE, FLASH TANK DIAMETER & VENT LINE

- Velocity of Flash Steam in Condensate Return Lines should be between 4000 and 6000 ft/min.
- Velocity in Flash Tank should be less than 600 ft/min.
- Velocity in a Vent Pipe should be less than 4000 ft/min.

FLUID FLOW IN PIPING

Flow o	of Wat	er thr	u Sch	edule		_												
	I	-		-			Drop pe		-	1	-	· · ·		-		-		1-
Flow Rate	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop	Velocity	Pressure Drop
(GPM)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)	(ft/s)	(PSI)
		33																
1 2	0.37	0.49	0.43	/4" 0.45	41	/2"												
3	1.12	3.53	0.64	0.94	0.47	0.44												
4	1.49	5.94	0.86	1.55	0.63	0.74											Ļ	
5 6	1.86 2.24	9.02 12.25	1.07 1.28	2.36 3.30	0.79 0.95	1.12 1.53	0.57	0.46										
8	2.98	21.1	1.72	5.52	1.26	2.63	0.76	0.75		/2"								
10 15	3.72 5.60	30.8 64.6	2.14 3.21	8.34 17.6	1.57 2.36	3.86 8.13	0.96	1.14 2.33	0.67	0.48		311						
20	7.44	110.5	4.29	29.1	3.15	13.5	1.43	3.86	1.34	1.64	0.87	0.59	31	/2"				
25			5.36	43.7	3.94	20.2	2.39	5.81	1.68	2.48	1.08	0.67	0.81	0.42		411		
30 35			6.43 7.51	62.9 82.5	4.72 5.51	29.1 38.2	2.87 3.35	8.04 10.95	2.01 2.35	3.43 4.49	1.30 1.52	1.21	0.97	0.60	0.88	4" 0.42		
40					6.30	47.8	3.82	13.7	2.68	5.88	1.74	2.06	1.30	1.00	1.01	0.53		
45 50					7.08 7.87	60.6	4.30 4.78	17.4 20.6	3.00 3.35	7.14 8.82	1.95 2.17	2.51 3.10	1.46 1.62	1.21 1.44	1.13 1.26	0.67		
50 60					1.0/	74.7	4.78 5.74	20.6	4.02	12.2	2.17	4.29	1.62	2.07	1.20	1.10	5	5"
70							6.69	38.6	4.69	15.3	3.04	5.84	2.27	2.71	1.76	1.50	1.12	0.48
80 90	6	33					7.65 8.60	50.3 63.6	5.37 6.04	21.7 26.1	3.48 3.91	7.62	2.59 2.92	3.53 4.46	2.01	1.87 2.37	1.28	0.63
100	1.11	0.39					9.56	75.1	6.71	32.3	4.34	11.4	3.24	5.27	2.52	2.81	1.60	0.95
125 150	1.39 1.67	0.56 0.78							8.38 10.06	48.2 60.4	5.42 6.51	17.1 23.5	4.05 4.86	7.86	3.15 3.78	4.38 6.02	2.00 2.41	1.48 2.04
150	1.67	1.06							11.73	90.0	7.59	32.0	4.86	11.3	4.41	8.20	2.41	2.04
200	2.22	1.32		3"							8.68	39.7	6.48	19.2	5.04	10.2	3.21	3.46
225 250	2.50 2.78	1.66 2.05	1.44 1.60	0.44 0.55							9.77 10.85	50.2 61.9	7.29 8.10	23.1 28.5	5.67 6.30	12.9 15.9	3.61	4.37 5.14
275	3.06	2.36	1.76	0.63							11.94	75.0	8.91	34.4	6.93	18.3	4.41	6.22
300	3.33	2.80	1.92	0.75							13.02	84.7	9.72	40.9	7.56	21.8	4.81	7.41
325 350	3.61 3.89	3.29 3.62	2.08 2.24	0.88 0.97									10.53 11.35	45.5 52.7	8.18 8.82	25.5 29.7	5.21 5.61	8.25 9.57
375	4.16	4.16	2.40	1.11									12.17	60.7	9.45	32.3	6.01	11.0
400 425	4.44 4.72	4.72 5.34	2.56 2.72	1.27 1.43									12.97 13.78	68.9 77.8	10.08	36.7 41.5	6.41 6.82	12.5 14.1
450	5.00	5.96	2.88	1.40	1(0"							14.59	87.3	11.33	46.5	7.22	15.0
475	5.27	6.66	3.04	1.69	1.93	0.30									11.96	51.7	7.62	16.7
500 550	5.55 6.11	7.39 8.94	3.20 3.53	1.87 2.26	2.04 2.24	0.63									12.59 13.84	57.3 69.3	8.02 8.82	18.5 22.4
600	6.66	10.6	3.85	2.70	2.44	0.86									15.10	82.5	9.62	26.7
650 700	7.21	11.8 13.7	4.17 4.49	3.16 3.69	2.65 2.85	1.01	2.01	2" 0.48									10.42 11.22	31.3 36.3
750	8.32	15.7	4.43	4.21	3.05	1.35	2.15	0.40									12.02	41.6
800	8.88	17.8	5.13	4.79	3.26	1.54	2.29	0.62		4"							12.82	44.7
850 900	9.44 10.00	20.2 22.6	5.45 5.77	5.11 5.73	3.46 3.66	1.74 1.94	2.44 2.58	0.70	2.02 2.14	0.43							13.62 14.42	50.5 56.6
950	10.55	23.7	6.09	6.38	3.87	2.23	2.72	0.88	2.25	0.53							15.22	63.1
1,000 1,100	11.10 12.22	26.3 31.8	6.41 7.05	7.08 8.56	4.07 4.48	2.40	2.87 3.16	0.98	2.38 2.61	0.59	1	6"					16.02 17.63	70.0 84.6
1,200	13.32	37.8	7.69	10.2	4.40	3.27	3.16	1.10	2.85	0.80	2.18	0.40					17.05	04.0
1,300	14.43	44.4	8.33	11.3	5.29	3.86	3.73	1.56	3.09	0.95	2.36	0.47						
1,400 1,500	15.54 16.65	51.5 55.5	8.97 9.62	13.0 15.0	5.70 6.10	4.44	4.02 4.30	1.80 2.07	3.32 3.55	1.10 1.19	2.54 2.73	0.54 0.62						
1,600	17.76	63.1	10.26	17.0	6.51	5.46	4.59	2.36	3.80	1.35	2.91	0.71		8"				
1,800	19.98	79.8	11.54	21.6	7.32	6.91	5.16	2.98	4.27	1.71	3.27	0.85	2.58	0.48				
2,000 2,500	22.20	98.5	12.83 16.03	25.0 39.0	8.13 10.18	8.54 12.5	5.73 7.17	3.47 5.41	4.74 5.92	2.11 3.09	3.63 4.54	1.05 1.63	2.88 3.59	0.56		20"	<u> </u>	
3,000			19.24	52.4	12.21	18.0	8.60	7.31	7.12	4.45	5.45	2.21	4.31	1.27	3.45	0.73		
3,500 4,000			22.43 25.65	71.4 93.3	14.25 16.28	22.9 29.9	10.03 11.48	9.95 13.0	8.32 9.49	6.18 7.92	6.35 7.25	3.00 3.92	5.03 5.74	1.52 2.12	4.03	0.94	2 3.19	4" 0.51
4,500			20.00	00.0	18.31	37.8	11.40	15.4	9.49	9.36	8.17	4.97	6.47	2.12	5.19	1.55	3.19	0.60
5,000					20.35	46.7	14.34	18.9	11.84	11.6	9.08	5.72	7.17	3.08	5.76	1.78	3.99	0.74
6,000 7,000					24.42 28.50	67.2 85.1	17.21 20.08	27.3 37.2	14.32 16.60	15.4 21.0	10.88 12.69	8.24 12.2	8.62 10.04	4.45 6.06	6.92 8.06	2.57 3.50	4.80 5.68	1.00 1.36
8,000							22.95	45.1	18.98	27.4	14.52	13.6	11.48	7.34	9.23	4.57	6.38	1.78
9,000							25.80	57.0	21.35	34.7	16.32	17.2	12.92	9.20	10.37	5.36	7.19	2.25
10,000 12,000							28.63 34.38	70.4 93.6	23.75 28.50	42.9 61.8	18.16 21.80	21.2 30.9	14.37 17.23	11.5 16.5	11.53 13.83	6.63 9.54	7.96 9.57	2.78 3.71
							00.00	50.0	20.00	01.0		00.0	1	10.0	10.00	0.04	1 0.07	0.71
14,000									33.20	84.0	25.42	41.6	20.10	20.7	16.14	12.0	11.18	5.05

PIP	E DA	TA TAB	LE												
Pij Siz (in	ze	Outside Diameter (in.)	Weight Class	Carbon Steel Schedule	Stainless Steel Schedule	Wall Thickness (in.)	Inside Diameter (in.)	Circum. (Ext.) (in.)	Circum. (Int.) (in.)	Flow Area (sq. in.)	Weight of Pipe (Ibs/Ft.)	Weight of Water (Ibs/Ft.)	Gallons of Water per Ft.	Section Modulus	Pipe Size (in.)
1,	8	0.405	– STD XS	- 40 80	10S 40S 80S	.049 .068 .095	.307 .269 .215	1.27	.96 .85 .68	.074 .057 .036	.19 .24 .31	.032 .025 .016	.004 .003 .002	.00437 .00523 .00602	1/8
1,	4	0.540	– STD XS	- 40 80	10S 40S 80S	.065 .088 .119	.410 .364 .302	1.70	1.29 1.14 .95	.132 .104 .072	.33 .42 .54	.057 .045 .031	.007 .005 .004	.01032 .01227 .01395	1/4
3/	8	0.675	– STD XS	- 40 80	10S 40S 80S	.065 .091 .126	.545 .493 .423	2.12	1.71 1.55 1.33	.233 .191 .141	.42 .57 .74	.101 .083 .061	.012 .010 .007	.01736 .0216 .0255	3/8
1,	2	0.840	– STD XS – XXS	- 40 80 160 -	5S 10S 40S 80S -	.065 .083 .109 .147 .187 .294	.710 .674 .622 .546 .466 .252	2.64	2.23 2.12 1.95 1.72 1.46 .79	.396 .357 .304 .234 .171 .050	.54 .67 .85 1.09 1.31 1.71	.172 .155 .132 .102 .074 .022	.021 .019 .016 .012 .009 .003	.0285 .0341 .0407 .0478 .0527 .0577	1 _{/2}
3/	4	1.050	– STD XS – XXS	- 40 80 160 -	5S 10S 40S 80S –	.065 .083 .113 .154 .219 .308	.920 .884 .824 .742 .612 .434	3.30	2.89 2.78 2.59 2.33 1.92 1.36	.665 .614 .533 .433 .296 .148	.69 .86 1.13 1.47 1.94 2.44	.288 .266 .231 .188 .128 .064	.035 .032 .028 .022 .015 .008	.0467 .0566 .0706 .0853 .1004 .1103	3 _{/4}
١		1.315	- STD XS - XXS	- 40 80 160 -	5S 10S 40S 80S –	.065 .109 .133 .179 .250 .358	1.185 1.097 1.049 .957 .815 .599	4.13	3.72 3.45 3.30 3.01 2.56 1.88	1.103 .945 .864 .719 .522 .282	.87 1.40 1.68 2.17 2.84 3.66	.478 .409 .375 .312 .230 .122	.057 .049 .045 .037 .027 .015	.0760 .1151 .1328 .1606 .1903 .2136	1
יו	/4	1.660	– STD XS – XXS	- 40 80 160 -	5S 10S 40S 80S –	.065 .109 .140 .191 .250 .382	1.530 1.442 1.380 1.278 1.160 .896	5.22	4.81 4.53 4.34 4.02 3.64 2.81	1.839 1.633 1.495 1.283 1.057 .630	1.11 1.81 2.27 3.00 3.76 5.21	.797 .708 .649 .555 .458 .273	.096 .085 .078 .067 .055 .033	.1250 .1934 .2346 .2913 .3421 .4110	11/4
יו	/ ₂	1.900	– STD XS – XXS	- 40 80 160	5S 10S 40S 80S -	.065 .109 .145 .200 .281 .400	1.770 1.682 1.610 1.500 1.338 1.100	5.97	5.56 5.28 5.06 4.71 4.20 3.46	2.461 2.222 2.036 1.767 1.406 .950	1.28 2.09 2.72 3.63 4.86 6.41	1.066 .963 .882 .765 .608 .420	.128 .115 .106 .092 .073 .049	.1662 .2598 .3262 .4118 .5078 .5977	1 ¹ /2
2	2	2.375	- STD XS - XXS	- 40 80 160 -	5S 10S 40S 80S –	.065 .109 .154 .218 .344 .436	2.245 2.157 2.067 1.939 1.687 1.503	7.46	7.05 6.78 6.49 6.09 5.30 4.72	3.958 3.654 3.355 2.953 2.241 1.774	1.61 2.64 3.65 5.02 7.46 9.03	1.72 1.58 1.45 1.28 .97 .77	.206 .190 .174 .153 .116 .092	.2652 .4204 .5606 .7309 .9790 1.1040	2
2 1	/ ₂	2.875	- STD XS - XXS	- 40 80 160	5S 10S 40S 80S –	.083 .120 .203 .276 .375 .552	2.709 2.635 2.469 2.323 2.125 1.771	9.03	8.51 8.28 7.76 7.30 6.68 5.56	5.764 5.453 4.788 4.238 3.546 2.464	2.48 3.53 5.79 7.66 10.01 13.69	2.50 2.36 2.07 1.87 1.54 1.07	.299 .283 .249 .220 .184 .128	.4939 .6868 1.064 1.339 1.638 1.997	2 ¹ /2
3	3	3.500	- STD XS - XXS	- 40 80 160 -	5S 10S 40S 80S –	.083 .120 .216 .300 .438 .600	3.334 3.260 3.068 2.900 2.624 2.300	11.00	10.47 10.24 9.64 9.11 8.24 7.23	8.730 8.347 7.393 6.605 5.408 4.155	3.03 4.33 7.58 10.25 14.32 18.58	3.78 3.62 3.20 2.86 2.35 1.80	.454 .434 .384 .343 .281 .216	.744 1.041 1.724 2.225 2.876 3.424	3
4	1	4.500	- STD XS - XXS	- 40 80 120 160 -	5S 10S 40S 80S - - -	.083 .120 .237 .337 .438 .531 .674	4.334 4.260 4.026 3.826 3.624 3.438 3.152	14.14	13.62 13.38 12.65 12.02 11.39 10.80 9.90	14.75 14.25 12.73 11.50 10.31 9.28 7.80	3.92 5.61 10.79 14.98 19.00 22.51 27.54	6.39 6.18 5.50 4.98 4.47 4.02 3.38	.766 .740 .661 .597 .536 .482 .405	1.249 1.761 3.214 4.271 5.178 5.898 6.791	4
Ę	5	5.563	- STD XS - - XXS	- 40 80 120 160 -	5S 10S 40S 80S - - -	.109 .134 .258 .375 .500 .625 .750	5.345 5.295 5.047 4.813 4.563 4.313 4.063	17.48	16.79 16.63 15.86 15.12 14.34 13.55 12.76	22.44 22.02 20.01 18.19 16.35 14.61 12.97	6.36 7.77 14.62 20.78 27.04 32.96 38.55	9.72 9.54 8.67 7.88 7.09 6.33 5.61	1.17 1.14 1.04 .945 .849 .759 .674	2.498 3.029 5.451 7.431 9.250 10.796 12.090	5

ENGINEERING

PIPE D	ATA TAB	LE (co	ntinued)											
Pipe Size (in.)	Outside Diameter (in.)	Weight Class	Carbon Steel Schedule	Stainless Steel Schedule	Wall Thickness (in.)	Inside Diameter (in.)	Circum. (Ext.) (in.)	Circum. (Ext.) (in.)	Flow Area (sq. in.)	Weight of Pipe (Ibs/Ft.)	Weight of Water (Ibs/Ft.)	Gallons of Water per Ft.	Section Modulus	Pipe Size (in.)
		-	-	5S	.109	6.407		20.13	32.24	7.60	13.97	1.68	3.576	
		-	-	105	.134	6.357		19.97	31.74	9.29	13.75	1.65	4.346	
6	6.625	STD XS	40 80	40S 80S	.280 .432	6.065 5.761	20.81	19.05 18.10	28.89 26.07	18.97 28.57	12.51 11.29	1.50 1.35	8.496 12.22	6
Ŭ	0.020	-	120	-	.562	5.501	20.01	17.28	23.77	36.39	10.30	1.33	14.98	
		-	160	-	.719	5.187		16.30	21.15	45.35	9.16	1.10	17.81	
		XXS	-	-	.864	4.897		15.38	18.84	53.16	8.16	.978	20.02	
		-	-	5S	.109	8.407		26.41	55.51	9.93	24.06	2.88	6.131	
		_	_ 20	10S _	.148 .250	8.329 8.125		26.17 25.53	54.48 51.85	13.40 22.36	23.61 22.47	2.83 2.69	8.212 13.39	
		-	30	-	.277	8.071		25.36	51.16	24.70	22.17	2.66	14.69	
0		STD	40	40S	.322	7.981		25.07	50.03	28.55	21.70	2.60	16.81	
8	8.625	- VC	60	-	.406	7.813	27.10	24.55	47.94	35.64 43.39	20.77	2.49	20.58 24.51	8
		XS _	80 100	80S _	.500 .594	7.625 7.437		23.95 23.36	45.66 43.46	43.39 50.95	19.78 18.83	2.37 2.26	24.51	
		-	120	-	.719	7.187		22.58	40.59	60.71	17.59	2.11	32.58	
		-	140	-	.812	7.001		21.99	38.50	67.76	16.68	2.00	35.65	
		XXS	-	-	.875	6.875		21.60	37.12	72.42	16.10	1.93	37.56	
		-	160	- 59	.906 .134	6.813		21.40	36.46	74.69	15.80	1.89	38.48	
		-	-	5S 10S	.134	10.482 10.420		32.93 32.74	86.29 85.28	15.19 18.65	37.39 36.95	4.48 4.43	11.71 14.30	
		-	20	-	.250	10.250		32.20	82.52	28.04	35.76	4.29	21.15	
		-	30	-	.307	10.136		31.84	80.69	34.24	34.96	4.19	25.57	
10	10.750	STD XS	40 60	40S 80S	.365 .500	10.020 9.750	33.77	31.48 30.63	78.86 74.66	40.48 54.74	34.20 32.35	4.10 3.88	29.90 39.43	10
10	10.750	^3 _	80		.594	9.750	33.77	30.03	74.00	64.43	31.13	3.73	45.54	10
		-	100	-	.719	9.312		29.25	68.13	77.03	29.53	3.54	53.22	
		-	120	-	.844	9.062		28.47	64.53	89.29	27.96	3.35	60.32	
		XXS _	140	-	1.000	8.750		27.49	60.13	104.13	26.06	3.12	68.43	
		-	160	- 5S	1.125 .156	8.500 12.438		26.70 39.08	56.75 121.50	115.64 20.98	24.59 52.65	2.95 6.31	74.29 19.2	
		_	_	105	.180	12.430		38.92	121.50	20.30	52.05	6.26	22.0	
		-	20	-	.250	12.250		38.48	117.86	33.38	51.07	6.12	30.2	
		-	30	-	.330	12.090		37.98	114.80	43.77	49.74	5.96	39.0	
		STD -	- 40	40S _	.375 .406	12.000 11.938		37.70 37.50	113.10 111.93	49.56 53.52	49.00 48.50	5.88 5.81	43.8 47.1	
12	12.750	XS	40	805	.500	11.938	40.06	36.91	108.43	65.42	46.92	5.63	56.7	12
		-	60	-	.562	11.626		36.52	106.16	73.15	46.00	5.51	62.8	
		-	80	-	.688	11.374		35.73	101.64	88.63	44.04	5.28	74.6	
		_ XXS	100 120	-	.844 1.000	11.062 10.750		34.75 33.77	96.14 90.76	107.32 125.49	41.66 39.33	4.99 4.71	88.1 100.7	
		-	140	_	1.125	10.750		32.99	86.59	139.67	37.52	4.71	100.7	
		-	160	-	1.312	10.126		31.81	80.53	160.27	34.89	4.18	122.6	
		-	-	5S	.156	13.688		43.00	147.15	23.07	63.77	7.64	23.2	
		-	-	105	.188	13.624		42.80	145.78	27.73	63.17	7.57	27.8	
		-	10 20	_	.250 .312	13.500 13.376		42.41 42.02	143.14 140.52	36.71 45.61	62.03 60.89	7.44 7.30	36.6 45.0	
		STD	30	-	.375	13.250		41.63	137.88	54.57	59.75	7.16	53.2	
14	14.000	-	40	-	.438	13.124		41.23	135.28	63.44	58.64	7.03	61.3	
14	14.000	XS _	- 60	-	.500 .594	13.000 12.812	43.98	40.84 40.25	132.73 128.96	72.09 85.05	57.46 55.86	6.90 6.70	69.1 80.3	14
		-	80	_	.750	12.500		40.25 39.27	120.90	106.13	53.18	6.37	98.2	
		-	100	-	.938	12.124		38.09	115.49	130.85	50.04	6.00	117.8	
		-	120	-	1.094	11.812		37.11	109.62	150.79	47.45	5.69	132.8	
		_	140 160	-	1.250 1.406	11.500 11.188		36.13 35.15	103.87 98.31	170.28 189.11	45.01 42.60	5.40 5.11	146.8 159.6	
		_	-	55	.165	15.670		49.23	192.85	27.90	83.57	10.02	32.2	
		-	-	105	.188	15.624		49.08	191.72	31.75	83.08	9.96	36.5	
		-	10	-	.250	15.500		48.69	188.69	42.05	81.74	9.80	48.0	
		-	20	-	.312	15.376		48.31	185.69	52.27	80.50	9.65	59.2	
16	16.00	STD XS	30 40	-	.375 .500	15.250 15.000	50.27	47.91 47.12	182.65 176.72	82.58 82.77	79.12 76.58	9.49 9.18	70.3 91.5	16
	10100	-	60	_	.656	14.688	50.27	46.14	169.44	107.50	73.42	8.80	116.6	
		-	80	-	.844	14.312		44.96	160.92	136.61	69.73	8.36	144.5	
		-	100	-	1.031	13.938		43.79	152.58	164.82	66.12	7.93	170.5	
		-	120	-	1.219	13.562		42.61	144.50	192.43	62.62	7.50	194.5	
		-	140	-	1.438	13.124		41.23	135.28	233.64	58.64	7.03	220.0	

PIPE D	ATA TAB	LE <u>(cor</u>	ntinu <u>ed)</u>											
Pipe Size (in.)	Outside Diameter (in.)	Weight Class	Carbon Steel Schedule	Stainless Steel Schedule	Wall Thickness (in.)	Inside Diameter (in.)	Circum. (Ext.) (in.)	Circum. (Ext.) (in.)	Flow Area (sq. in.)	Weight of Pipe (Ibs/Ft.)	Weight of Water (Ibs/Ft.)	Gallons of Water per Ft.	Section Modulus	Pipe Size (in.)
18	18.00	- - STD - XS - - - - - - -	- 10 20 - 30 - 40 60 80 100 120 140 160	5S 10S - - - - - - - - - - - - -	.165 .188 .250 .312 .375 .438 .500 .562 .750 .938 1.156 1.375 1.562 1.781	17.67 17.62 17.50 17.38 17.25 17.12 17.00 16.88 16.50 16.12 15.69 15.25 14.88 14.44	56.55	55.51 55.37 54.98 54.59 54.19 53.80 53.41 53.02 51.84 50.66 49.29 47.91 46.73 45.36	245.22 243.95 240.53 237.13 233.71 230.30 226.98 223.68 213.83 204.24 193.30 182.66 173.80 163.72	31.43 35.76 47.39 58.94 70.59 82.15 93.45 104.87 138.17 170.92 207.96 244.14 274.22 308.50	106.26 105.71 104.21 102.77 101.18 99.84 98.27 96.93 92.57 88.50 83.76 79.07 75.32 70.88	12.74 12.67 12.49 12.32 12.14 11.96 11.79 11.62 11.11 10.61 10.04 9.49 9.03 8.50	40.8 46.4 61.1 75.5 89.6 103.4 117.0 130.1 168.3 203.8 242.3 277.6 305.5 335.6	18
20	20.00	- - STD XS - - - - -	- 10 20 30 40 60 80 100 120 140 160	58 10S - - - - - - - - - - - -	.188 .218 .250 .375 .500 .594 .812 1.031 1.281 1.500 1.750 1.969	19.62 19.56 19.50 19.25 19.00 18.81 18.38 17.94 17.44 17.00 16.50 16.06	62.83	61.65 61.46 60.48 59.69 59.10 57.73 56.35 54.78 53.41 51.84 50.46	302.46 300.61 298.65 290.04 283.53 278.00 265.21 252.72 238.83 226.98 213.82 202.67	39.78 46.06 52.73 78.60 104.13 123.11 166.40 208.87 256.10 296.37 341.09 379.17	131.06 130.27 129.42 125.67 122.87 120.46 114.92 109.51 103.39 98.35 92.66 87.74	15.71 15.62 15.51 15.12 14.73 14.44 13.78 13.13 12.41 11.79 11.11 10.53	57.4 66.3 75.6 111.3 145.7 170.4 225.7 277.1 331.5 375.5 421.7 458.5	20
22	22.00	- - STD XS - - - - - - -	- 10 20 30 60 80 100 120 140 160	5S 10S - - - - - - - - - - -	.188 .218 .250 .375 .500 .875 1.125 1.375 1.625 1.875 2.125	21.62 21.56 21.25 21.00 20.25 19.75 19.25 18.75 18.25 17.75	69.12	67.93 67.75 67.54 66.76 65.97 63.62 62.05 60.48 58.90 57.33 55.76	367.25 365.21 363.05 354.66 346.36 322.06 306.35 291.04 276.12 261.59 247.45	43.80 50.71 58.07 86.61 114.81 197.41 250.81 302.88 353.61 403.00 451.06	159.14 158.26 157.32 153.68 150.09 139.56 132.76 126.12 119.65 113.36 107.23	19.08 18.97 18.86 18.42 17.99 16.73 15.91 15.12 14.34 13.59 12.85	69.7 80.4 91.8 135.4 177.5 295.0 366.4 432.6 493.8 550.3 602.4	22
24	24.00	- STD XS - - - - - - -	- 10 20 - 30 40 60 80 100 120 140 160	5S 10S - - - - - - - - - - - -	.218 .250 .375 .500 .562 .688 .969 1.219 1.531 1.812 2.062 2.344	23.56 23.50 23.25 23.00 22.88 22.62 22.06 21.56 20.94 20.38 19.88 19.31	75.40	74.03 73.83 73.04 72.26 71.86 71.08 69.31 67.74 65.78 64.01 62.44 60.67	436.10 433.74 424.56 415.48 411.00 402.07 382.35 365.22 344.32 326.08 310.28 292.98	55 63 95 125 141 171 238 297 367 430 483 542	188.98 187.95 183.95 179.87 178.09 174.23 165.52 158.26 149.06 141.17 134.45 126.84	22.65 22.53 22.05 21.58 21.35 20.88 19.86 18.97 17.89 16.94 16.12 15.22	96.0 109.6 161.9 212.5 237.0 285.1 387.7 472.8 570.8 652.1 718.9 787.9	24
30	30.00	– STD XS –	- 10 - 20 30	5S 10S - - -	.250 .312 .375 .500 .625	29.50 29.38 29.25 29.00 28.75	94.25	92.68 92.29 91.89 91.11 90.32	683.49 677.71 671.96 660.52 649.18	79 99 119 158 196	296.18 293.70 291.18 286.22 281.31	35.51 35.21 34.91 34.31 33.72	172.3 213.8 255.3 336.1 414.9	30

MAXIMUM AL	LOWABLE	WORKI	NG PRE	SSURES ((PSIG) I	OR SEA	MLESS	CARBO	N STEEL	PIPE			
Nominal				Maxir	num allov	vable work	king pres	sure at -2	0 to 650 °F				
Pipe Size (in.)	SCH 10	SCH 20	SCH 30	STD WALL	SCH 40	SCH 60	XH	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160	XXH
1/2	-	-	-	1694	1694	-	3036	3036	-	-	-	4551	9223
3/4	659	-	-	1450	1450	-	2589	2589	-	-	-	4505	7531
1	1065	-	-	1578	1578	-	2601	2601	-	-	-	4290	7150
1 ¹ /4	556	-	-	1069	1069	-	1941	1941	-	-	-	3001	5593
11/2	486	-	-	1004	1004	-	1821	1821	-	-	-	3091	5114
2	388	-	-	903	903	-	1659	1659	-	-	-	3225	4475
2 ¹ /2	431	-	-	1214	1214	-	1936	1936	-	-	-	2963	4936
3	346	-	-	1094	1094	-	1773	1773	-	-	-	2933	4405
31/2	303	-	-	1023	1023	-	1671	1671	-	-	-	-	-
4	269	-	-	974	974	-	1598	1598	-	2243	-	2868	3858
5	284	-	-	888	888	-	1475	1475	-	2123	-	2791	3485
6	239	-	-	833	833	-	1473	1473	-	2038	-	2738	3414
8	225	543	628	770	1038	1343	1343	1649	2068	2388	2715	2605	-
10	224	434	578	723	723	1070	1070	1311	1641	1975	2406	2754	-
12	219	366	534	630	696	1033	898	1305	1653	2009	2295	2735	-
14	333	451	573	573	693	999	816	1311	1690	2013	2341	2675	-
16	291	395	500	500	711	980	711	1305	1638	1975	2378	2669	-
18	258	350	538	444	725	1013	631	1303	1648	1998	2303	2665	-
20	233	399	568	399	693	995	568	1299	1653	1970	2338	2663	-
22	211	-	-	363	-	-	515	-	-	-	-	-	-
24	194	331	541	331	683	1004	471	1295	1664	2003	2309	2656	-
26	-	-	-	306	-	-	435	-	-	-	-	-	-
30	209	376	488	265	-	-	376	-	-	-	-	-	-
36	-	-	-	220	-	-	314	-	-	-	-	-	-
42	-	-	-	189	-	-	269	-	-	-	-	-	-

▲ For allowable working pressures at higher temperatures, multiply values listed above by the following factors:

Grade A						Grade B					
Temperature	700 °F	750 °F	800 °F	850 °F	900 °F	Temperature	700 °F	750 °F	800 °F	850 °F	9
Multiply by	0.971	0.892	0.750	0.708	0.417	Multiply by	0.956	0.853	0.720	0.620	0.

FLANGE STANDARDS – Dimensional Data in inches

125 lb. CAST IRON											ANSI	STA	NDAF	D B1	6.1
PIPE SIZE	1/ ₂	3/ ₄	1	1 ¹ /4	1 ¹ / 2	2	2 ¹ / ₂	3	3 ¹ / 2	4	5	6	8	10	12
Diameter of Flange	-	_	$4^{1}/_{4}$	45/ ₈	5	6	7	$71/_{2}$	81/ ₂	9	10	11	13¹/ ₂	16	19
Thickness of Flange (min) ^a	_	_	7/ ₁₆	1/ ₂	^{9/} 16	5/ ₈	¹¹ / ₁₆	³ / ₄	¹³ / ₁₆	¹⁵ / ₁₆	¹⁵ / ₁₆	1	11/ ₈	1 ³ / ₁₆	1 ¹ / ₄
Diameter of Bolt Circle	_	_	31/ ₈	31/ ₂	37/ ₈	4 ³ / ₄	51/ ₂	6	7	$71/_{2}$	81/ ₂	91/ ₂	11 ³ / ₄	1 4¹/ ₄	17
Number of Bolts	_	_	4	4	4	4	4	4	8	8	8	8	8	12	12
Diameter of Bolts	-	-	1/ ₂	1/ ₂	1/ ₂	5/ ₈	5/ ₈	5/ ₈	5/ ₈	5/8	3/4	3/4	3/4	7/ ₈	7/8

^a 125 lb. Cast Iron Flanges have plain faces (i.e. not raised faces).

250 lb. CAST IRON											ANSI	STA	NDAF	D B1	6.1
PIPE SIZE	1/ ₂	³ / 4	1	1 ¹ / ₄	1 ¹ / 2	2	2 ¹ / ₂	3	31/ ₂	4	5	6	8	10	12
Diameter of Flange	-	-	47/ ₈	$5^{1}/_{4}$	61/ ₈	$6^{1}/_{2}$	$71/_{2}$	81/ ₄	9	10	11	12 ¹ / ₂	15	17 ¹ / ₂	$201/_{2}$
Thickness of Flange (min) ^b	-	-	¹¹ / ₁₆	3/4	¹³ / ₁₆	7/ ₈	1	1 ¹ /8	1 ³ / ₁₆	$1^{1}/_{4}$	1 ³ /8	1 ⁷ / ₁₆	1 ⁵ /8	1 ⁷ /8	2
Diameter of Raised Face	—	_	2 ¹¹ / ₁₆	3 ¹ / ₁₆	3 ⁹ / ₁₆	4 ³ / ₁₆	4 ¹⁵ / ₁₆	5 ¹¹ / ₁₆	6 ⁵ / ₁₆	6 ¹⁵ / ₁₆	8 ⁵ / ₁₆	9 ¹¹ / ₁₆	11 ¹⁵ / ₁₆	1 4¹/ ₁₆	16 ⁷ / ₁₆
Diameter of Bolt Circle	_	—	$3^{1}/_{2}$	3 ⁷ /8	$4^{1}/_{2}$	5	5 ⁷ /8	6 ⁵ /8	$7^{1}/_{4}$	7 ⁷ / ₈	$9^{1}/_{4}$	10 ⁵ /8	13	15 ¹ / ₄	17 ³ / ₄
Number of Bolts	-	-	4	4	4	8	8	8	8	8	8	12	12	16	16
Diameter of Bolts	_	_	5/ ₈	5/ ₈	3/4	5/ ₈	з/4	3/4	3/4	3/4	3/4	з/4	7/ ₈	1	1 1/8

^b 250 lb. Cast Iron Flanges have a 1/16" raised face which is included in the flange thickness dimensions.

150 lb. BRONZE										,	ANSI	STA	NDAF	D B1	6.24
PIPE SIZE	1/ ₂	³ / 4	1	1 ¹ / 4	1 ¹ / 2	2	2 ¹ / ₂	3	3 ¹ / ₂	4	5	6	8	10	12
Diameter of Flange	31/ ₂	37/8	$4^{1}/_{4}$	45/ ₈	5	6	7	$71/_{2}$	81/ ₂	9	10	11	13¹/ ₂	16	19
Thickness of Flange (min) ^c	5/ ₁₆	11/ ₃₂	3/ ₈	13/ ₃₂	7/ ₁₆	1/ ₂	9/ ₁₆	5/ ₈	^{11/} 16	^{11/} 16	3/4	^{13/} 16	^{15/} 16	1	1 1/ ₁₆
Diameter of Bolt Circle	2 ³ /8	2 ³ / ₄	31/ ₈	$3^{1}/_{2}$	37/ ₈	4 ³ / ₄	$5^{1}/_{2}$	6	7	$7^{1}/_{2}$	81/ ₂	91/ ₂	11 ³ / ₄	14 ¹ / ₄	17
Number of Bolts	4	4	4	4	4	4	4	4	8	8	8	8	8	12	12
Diameter of Bolts	1/2	1/2	1/2	1/2	1/2	5/ ₈	5/ ₈	5/ ₈	5/ ₈	5/ ₈	3/4	3/4	3/4	7/8	7/8

c 150 lb. Bronze Flanges have plain faces (i.e. not raised faces) with two concentric gasket-retaining grooves between the port and the bolt holes.

300 lb. BRONZE											ANSI	STAN	NDAR	D B1	6.24
PIPE SIZE	1/ ₂	3/ ₄	1	1 ¹ / ₄	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / ₂	4	5	6	8	10	12
Diameter of Flange	3 ³ / ₄	45/ ₈	47/ ₈	$5^{1}/_{4}$	$6^{1/2}$	$6^{1}/_{2}$	$71/_{2}$	81/ ₄	9	10	11	12 ¹ / ₂	15	-	_
Thickness of Flange (min) ^d	1/ ₂	¹⁷ / ₃₂	¹⁹ / ₃₂	5/ ₈	^{11/} 16	3/4	¹³ / ₁₆	²⁹ / ₃₂	³¹ / ₃₂	1 ¹ / ₁₆	1 1/8	1 ³ / ₁₆	1 ³ /8	_	-
Diameter of Bolt Circle	2 ⁵ /8	$3^{1}/_{4}$	$3^{1}/_{2}$	37/ ₈	$41/_{2}$	5	57/ ₈	6 ⁵ /8	$7^{1}/_{4}$	77/ ₈	$9^{1}/_{4}$	10 ⁵ /8	13	_	-
Number of Bolts	4	4	4	4	4	8	8	8	8	8	8	12	12	_	-
Diameter of Bolts	1/ ₂	⁵ /8	5/ ₈	5/ ₈	3/4	⁵ /8	3/4	3/4	3/4	3/4	3/4	3/4	7/8	_	_

d 300 lb. Bronze Flanges have plain faces (i.e. not raised faces) with two concentric gasket-retaining grooves between the port and the bolt holes.

FLANGE STANDARDS - Dimensional Data in inches (continued)

150 lb. STEEL ANSI STANDARD B16.5															6.5
PIPE SIZE	1/ 2	³ /4	1	1 ¹ /4	1 ¹ / 2	2	2 ¹ / ₂	3	3 ¹ / ₂	4	5	6	8	10	12
Diameter of Flange	_	-	4	45/ ₈	5	6	7	$71/_{2}$	81/ ₂	9	10	11	13¹/ ₂	16	19
Thickness of Flange (min) ^e	_	_	7/ ₁₆	1/2	^{9/} 16	5/ ₈	^{11/} 16	3/4	^{13/} 16	^{15/} 16	^{15/} 16	1	1 ¹ / ₈	1 ³ / ₁₆	1 ¹ / ₄
Diameter of Raised Face	-	_	2	$2^{1/2}$	27/ ₈	35/ ₈	41/ ₈	5	$51/_{2}$	6 ³ / ₁₆	7 ^{5/} 16	$8^{1/2}$	10 ⁵ /8	12 ³ /4	15
Diameter of Bolt Circle	_	_	31/8	31/2	37/8	43/4	$51/_{2}$	6	7	$71/_{2}$	81/ ₂	91/ ₂	11 ³ / ₄	1 41/ ₄	17
Number of Bolts	_	_	4	4	4	4	4	4	8	8	8	8	8	12	12
Diameter of Bolts	-	-	1/2	1/2	1/2	5/8	5/8	5/ ₈	5/ ₈	5/ ₈	3/4	3/4	3/4	7/8	7/8

e 150 lb. Steel Flanges have a 1/16" raised face which is included in the flange thickness dimensions.

300 lb. STEEL	300 lb. STEEL ANSI STANDARD B16.														
PIPE SIZE	1/ ₂	³ / 4	1	1 ¹ /4	1 ¹ /2	2	2 ¹ / ₂	3	3 ¹ / 2	4	5	6	8	10	12
Diameter of Flange	-	-	47/ ₈	$5^{1}/_{4}$	6¹/ ₈	$6^{1}/_{2}$	$71/_{2}$	81/ ₄	9	10	11	12 ¹ / ₂	15	17¹/ ₂	$20^{1}/_{2}$
Thickness of Flange (min) ^f	—	_	^{11/} 16	з/4	¹³ / ₁₆	7/8	1	1 1/ ₈	13/ ₁₆	1 1/ ₄	1 ³ /8	17/ ₁₆	15/ ₈	17/ ₈	2
Diameter of Raised Face	_	_	2	$2^{1}/_{2}$	2 ⁷ /8	3 ⁵ /8	41/ ₈	5	$5^{1}/_{2}$	6 ³ / ₁₆	7 ⁵ / ₁₆	81/2	10 ⁵ /8	12 ³ / ₄	15
Diameter of Bolt Circle	_	_	31/ ₂	37/8	$41/_{2}$	5	57/ ₈	6 ⁵ /8	$71/_{4}$	7 ⁷ / ₈	9 ¹ / ₄	10 ⁵ /8	13	15¹/ ₄	17 ³ /4
Number of Bolts	—	_	4	4	4	8	8	8	8	8	8	12	12	16	16
Diameter of Bolts	_	_	5/ ₈	3/4	5/ ₈	3/4	3/4	3/4	з/4	3/4	3/4	3/4	7/ ₈	1	1 ¹ / ₈

 $^{\rm f}\,$ 300 lb. Steel Flanges have a 1/16" raised face which is included in the flange thickness dimensions.

400 Ib. STEEL ANSI STANDARD B16															6.5
PIPE SIZE	1/ ₂	³ / 4	1	1 ¹ /4	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / 2	4	5	6	8	10	12
Diameter of Flange	3 ³ / ₄	4 ⁵ / ₈	47/ ₈	$5^{1}/_{4}$	6 ¹ / ₈	$6^{1}/_{2}$	$7^{1}/_{2}$	81/ ₄	9	10	11	12 ¹ / ₂	15	17 ¹ / ₂	$20^{1}/_{2}$
Thickness of Flange (min) ^g	9/ ₁₆	5/ ₈	^{11/} 16	^{13/} 16	7/ ₈	1	11/ ₈	1 1/4	13/ ₈	1 ³ /8	1 1/2	15/ ₈	17/ ₈	21/ ₈	$2^{1}/_{4}$
Diameter of Raised Face	13/ ₈	1 ^{11/} 16	2	$2^{1}/_{2}$	27/ ₈	35/ ₈	41/ ₈	5	$5^{1}/_{2}$	6 ³ / ₁₆	7 ⁵ / ₁₆	81/ ₂	10 ⁵ /8	12 ³ /4	15
Diameter of Bolt Circle	2 ⁵ /8	31/4	$3^{1}/_{2}$	3 ⁷ /8	$4^{1}/_{2}$	5	5 ⁷ /8	6 ⁵ /8	$7^{1}/_{4}$	7 ⁷ / ₈	$9^{1}/_{4}$	10 ⁵ /8	13	15 ¹ / ₄	17 ³ / ₄
Number of Bolts	4	4	4	4	4	8	8	8	8	8	8	12	12	16	16
Diameter of Bolts	1/ ₂	5/ ₈	5/ ₈	5/ ₈	3/4	5/ ₈	3/4	3/ ₄	7/ ₈	7/ ₈	7/ ₈	7/ ₈	1	11/ ₈	1 ¹ / ₄

9 400 lb. Steel Flanges have a 1/4" raised face which is included in the flange thickness dimensions.

600 lb. STEEL ANSI STANDARD B16.															6.5
PIPE SIZE	1/ ₂	³ / ₄	1	1 ¹ /4	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / ₂	4	5	6	8	10	12
Diameter of Flange	3 ³ / ₄	45/ ₈	47/ ₈	51/ ₄	6¹/ ₈	$6^{1}/_{2}$	$71/_{2}$	81/4	9	10 ³ / ₄	13	14	16 ¹ / ₂	20	22
Thickness of Flange (min) ^h	9/ ₁₆	5/ ₈	^{11/} 16	^{13/} 16	7/ ₈	1	11/ ₈	1 1/ ₄	13/ ₈	1 1/2	13/ ₄	17/ ₈	2 ³ / ₁₆	$2^{1}/_{2}$	2 ⁵ /8
Diameter of Raised Face	1 ³ /8	1 ¹¹ / ₁₆	2	$2^{1}/_{2}$	2 ⁷ /8	3 ⁵ /8	4 ¹ / ₈	5	$5^{1}/_{2}$	6 ³ / ₁₆	7 ⁵ / ₁₆	8 ¹ / ₂	10 ⁵ /8	12 ³ / ₄	15
Diameter of Bolt Circle	2 ⁵ /8	31/4	$3^{1}/_{2}$	37/8	$41/_{2}$	5	57/ ₈	6 ⁵ /8	71/4 81/2	2 10 ¹ /2	11 ¹ / ₂	13 ³ / ₄	17	19 ¹ / ₄	
Number of Bolts	4	4	4	4	4	8	8	8	8	8	8	12	12	16	20
Diameter of Bolts	1/ ₂	⁵ /8	⁵ /8	5/ ₈	3/4	5/ ₈	3/4	3/4	7/ ₈	7/ ₈	1	1	1 1/8	1 ¹ / ₄	1 ¹ / ₄

^h 600 lb. Steel Flanges have a 1/4" raised face which is included in the flange thickness dimensions.

ENGINEERING

FITTING STANDARDS & SPECIFICATIONS

Class or Material	Dimensions	Material Spec.	Galvanizing	Thread	Pressure Rating	Federal/Other
Malleable Iron Fittir	igs				•	
Class 150/PN 20	ASME B16.3•	ASTM A-197	ASTM A-153	ASME B120.1+	ASME B16.3•	ASME B16.3**
Class 300/PN 50	ASME B16.3•	ASTM A-197	ASTM A-153	ASME B120.1+	ASME B16.3•	
Malleable Iron Unio	ns					
Class 150/PN 20	ASME B16.39•	ASTM A-197	ASTM A-153	ASME B120.1+	ASME B16.39•	ASME B16.39***
Class 250	ASME B16.39•	ASTM A-197	ASTM A-153	ASME B120.1+	ASME B16.39•	
Class 300/PN 50	ASME B16.39•	ASTM A-197	ASTM A-153	ASME B120.1+	ASME B16.39•	
Cast Iron Threaded	Fittings					
Class 125	ASME B16.4•	ASTM A-126 (A)	ASTM A-153	ASME B120.1+	ASME B16.4•	ASME B16.4u
Class 250	ASME B16.4•	ASTM A-126 (A)	ASTM A-153	ASME B120.1+	ASME B16.4•	ASME B16.4u
Cast Iron Plugs & B	ushings	·				
	ASME B16.14•	ASTM A-126 (A)	ASTM A-153	ASME B120.1+	ASME B16.14•	WW-P-471
Cast Iron Drainage	Threaded Fitting	gs				
	ASME B16.12•	ASTM A-126 (A)	ASTM A-153	ASME B120.1+	ASME B16.12•	
Cast Iron Flanges &	Flanged Fitting	S				
Class 125 (1"-12")	ASME B16.1•	ASTM A-126 (A) or (B)	ASTM A-153	ASME B120.1+	ASME B16.1•	ASME B16.1•
Class 125 (14" & up)	ASME B16.1•	ASTM A-126 (B)	ASTM A-153	ASME B120.1+	ASME B16.1•	ASME B16.1•
Class 250 (1"-12")	ASME B16.1•	ASTM A-126 (A) or (B)	ASTM A-153	ASME B120.1+	ASME B16.1•	ASME B16.1•
Class 250 (14" & up)	ASME B16.1•	ASTM A-126 (B)	ASTM A-153	ASME B120.1+	ASME B16.1•	ASME B16.1•
Forged Steel Threa	ded Fittings					
Class 2000, 3000, 6000	ASME B16.11•	ASTM A105, ASTM A182, ASTM A350		ASME B120.1+	ASME B16.11•	
Pipe Nipples						
Steel Pipe - welded	ASTM A733	ASTM A53 Type F or Type E		ASME B120.1+		WWN 351
Steel Pipe - seamless (High Temperature)	ASTM A733	ASTM A106 Gr.B		ASME B120.1+		WWN 351
Brass		ASTM B43		ASME B120.1+		WWN 351

• an American National standard (ANSI)

+ ASME B120.1 was ANSI B2.1

u Formerly WW-P-501

** Formerly WW-P-521

*** Formerly WW-U-531

STANDARD CLASS PRESSURE-TEMPERATURE RATINGS ANSI/ASME B16.34

STAN	STANDARD CLASS PRESSURE-TEMPERATURE RATINGS ANSI/ASME B16.34													
Working Pressure by Classes	Temperature (°F)	A 216 WCB (a)	A 352 LCB (d)	A 216 WCC (d) A 352 LC2 (d) A 352 LC3 (d) A 352 LCC (e)	A 217 WC1 (b) A 352 LC1 (d)	A 217 WC4 (h) A 217 WC5 (i)	A 217 WC6 (j)	A 217 WC9 (j)	A 217 C5	A 217 C12	A 351 CF3 (f) A 351 CF8	A 351 CF3M (g) A 351 CF8M	A 351 CF8C	A 351 CN7M (I)
							Workin	g Pressure	in PSI					
	-20 to 100 200 300 400 500	285 260 230 200 170	265 250 230 200 170	290 260 230 200 170	265 260 230 200 170	290 260 230 200 170	290 260 230 200 170	290 260 230 200 170	290 260 230 200 170	290 260 230 200 170	275 235 205 180 170	275 240 215 195 170	275 245 225 200 170	230 215 200 185 170
LB.	600 650 700 750 800	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80	140 125 110 95 80
150 L	850 900 950 1000 1050	65 50 35 20 -	65 50 35 20 -	65 50 35 20 -	65 50 35 20 -	65 50 35 20 20(1)	65 50 35 20 20(1)	65 50 35 20 20(1)	65 50 35 20 20(1)	65 50 35 20 20(1)	65 50 35 20 20(1)	65 50 35 20 20(1)	65 50 35 20 20(1)	- - - -
	1100 1150 1200 1250 1300						20(1) 20(1) 15(1) –	20(1) 20(1) 20(1) – –	20(1) 20(1) 20(1) - -	20(1) 20(1) 20(1) – –	20(1) 20(1) 20(1) 20(1) 20(1)	20(1) 20(1) 20(1) 20(1) 20(1)	20(1) 20(1) 20(1) 20(1) 20(1)	
	1350 1400 1450 1500	- - -	-	- - -		- - -	- - -	- - -			20(1) 20(1) 15(1) 10(1)	20(1) 20(1) 20(1) 15(1)	20(1) 20(1) 20(1) 15(1)	- - -
	-20 to 100 200 300 400 500	740 675 655 635 600	695 655 640 620 585	750 750 730 705 665	695 680 655 640 620	750 750 730 705 665	750 710 675 660 640	750 715 675 650 640	750 750 730 705 665	750 750 730 705 665	720 600 530 470 435	720 620 560 515 480	720 635 590 555 520	600 555 525 480 470
	600 650 700 750 800	550 535 535 505 410	535 525 520 475 390	605 590 570 505 410	605 590 570 530 510	605 590 570 530 510	605 590 570 530 510	605 590 570 530 510	605 590 570 530 510	605 590 570 530 510	415 410 405 400 395	450 445 430 425 415	490 480 470 460 455	455 450 445 440 430
300 LB.	850 900 950 1000 1050	270 170 105 50 -	270 170 105 50 -	270 170 105 50 -	485 450 280 165 -	485 450 345 215 190	485 450 380 225 140	485 450 380 270 200	440 355 260 190 140	485 450 370 290 190	390 385 375 325 310	405 395 385 365 360	445 430 385 365 360	
	1100 1150 1200 1250 1300						95 50 35 -	115 105 55 –	105 70 45 –	115 75 50 –	260 195 155 110 85	325 275 205 180 140	325 275 170 125 95	
	1350 1400 1450 1500	- - -		- - -		- - -	- - -	- - -	- - -	- - -	60 50 35 25	105 75 60 40	70 50 40 35	- - -

STANDARD CLASS PRESSURE-TEMPERATURE RATINGS ANSI/ASME B16.34 (continued)

Working Pressure by Classes	Temperature (°F)	A 216 WCB (a)	A 352 LCB (d)	A 216 WCC (a) A 352 LC2 (d) A 352 LC3 (d) A 352 LCC (e)	A 217 WC1 (b) A 352 LC1 (d)	A 217 WC4 (h) A 217 WC5 (i)	A 217 WC6 (j)	A 217 WC9 (j)	A 217 C5	A 217 C12	A 351 CF3 (f) A 351 CF8	A 351 CF3M (g) A 351 CF8M	A 351 CF8C	A 351 CN7M (I)
							Workin	g Pressure	in PSI					
	-20 to 100 200 300 400 500	990 900 875 845 800	925 875 850 825 775	1000 1000 970 940 885	925 905 870 855 830	1000 1000 970 940 885	1000 950 895 880 855	1000 955 905 865 855	1000 1000 970 940 885	1000 1000 970 940 885	960 800 705 630 585	960 825 745 685 635	960 850 785 740 690	800 740 700 640 625
	600 650 700 750 800	730 715 710 670 550	710 695 690 630 520	805 785 755 670 550	805 785 755 710 675	805 785 755 710 675	805 785 755 710 675	805 785 755 710 675	805 785 755 710 675	805 785 755 710 675	555 545 540 530 525	600 590 575 565 555	655 640 625 615 610	605 600 595 585 575
400 LB.	850 900 950 1000 1050	355 230 140 70 -	355 230 140 70 -	355 230 140 70 -	650 600 375 220 -	650 600 460 285 250	650 600 505 300 185	650 600 505 355 265	585 470 350 255 190	650 600 495 390 250	520 510 500 430 410	540 525 515 485 480	590 575 515 485 480	- - - -
	1100 1150 1200 1250 1300	- - - -		- - - -			130 70 45 -	150 140 75 -	140 90 60 –	150 100 70 -	345 260 205 145 110	430 365 275 245 185	430 365 230 165 125	- - - -
	1350 1400 1450 1500	- - -	- - -	- - - -	- - -	- - -	- - -	- - -	- - -	- - - -	85 65 45 30	140 100 80 55	90 70 55 45	- - - -
	-20 to 100 200 300 400 500	1480 1350 1315 1270 1200	1390 1315 1275 1235 1165	1500 1500 1455 1410 1330	1390 1360 1305 1280 1245	1500 1500 1455 1410 1330	1500 1425 1345 1315 1285	1500 1430 1355 1295 1280	1500 1500 1455 1410 1330	1500 1500 1455 1410 1330	1440 1200 1055 940 875	1440 1240 1120 1030 955	1440 1270 1175 1110 1035	1200 1115 1045 960 935
·	600 650 700 750 800	1095 1075 1065 1010 825	1065 1045 1035 945 780	1210 1175 1135 1010 825	1210 1175 1135 1065 1015	1210 1175 1135 1065 1015	1210 1175 1135 1065 1015	1210 1175 1135 1065 1015	1210 1175 1135 1065 1015	1210 1175 1135 1065 1015	830 815 805 795 790	905 890 865 845 830	985 960 935 920 910	910 900 890 880 865
600 LB.	850 900 950 1000 1050	535 345 205 105 -	535 345 205 105 -	535 345 205 105 –	975 900 560 330 -	975 900 685 425 380	975 900 755 445 275	975 900 755 535 400	880 705 520 385 280	975 900 740 585 380	780 770 750 645 620	810 790 775 725 720	890 865 775 725 720	- - - -
	1100 1150 1200 1250 1300	- - - -		- - - -			190 105 70 -	225 205 110 - -	205 140 90 -	225 150 105 –	515 390 310 220 165	645 550 410 365 275	645 550 345 245 185	- - - -
	1350 1400 1450 1500	- - -		- - - -	- - -	- - -	- - -	- - -	- - -	- - -	125 95 70 50	205 150 115 85	135 105 80 70	- - - -

STANDARD CLASS PRESSURE-TEMPERATURE RATINGS ANSI/ASME B16.34 (continued)

Working Pressure by Classes	Temperature (°F)	A 216 WCB (a)	A 352 LCB (d)	A 216 WCC (a) A 352 LC2 (d) A 352 LC3 (d) A 352 LCC (e)	A 217 WC1 (b) A 352 LC1 (d)	A 217 WC4 (h) A 217 WC5 (i)	A 217 WC6 (j)	A 217 WC9 (j)	A 217 C5	A 217 C12	A 351 CF3 (f) A 351 CF8	A 351 CF3M (g) A 351 CF8M	A 351 CF8C	A 351 CN7M (I)
				A 332 200 (07			Workin	g Pressure	in PSI					
	-20 to 100 200 300 400 500	2220 2025 1970 1900 1795	2085 1970 1915 1850 1745	2250 2250 2185 2115 1995	2085 2035 1955 1920 1865	2250 2250 2185 2115 1995	2250 2135 2020 1975 1925	2250 2150 2030 1945 1920	2250 2250 2185 2115 1995	2250 2250 2185 2115 1995	2160 1800 1585 1410 1310	2160 1860 1680 1540 1435	2160 1910 1765 1665 1555	1800 1670 1570 1445 1405
8.	600 650 700 750 800	1640 1610 1600 1510 1235	1600 1570 1555 1420 1175	1815 1765 1705 1510 1235	1815 1765 1705 1595 1525	1815 1765 1705 1595 1525	1815 1765 1705 1595 1525	1815 1765 1705 1595 1525	1815 1765 1705 1595 1490	1815 1765 1705 1595 1525	1245 1225 1210 1195 1180	1355 1330 1295 1270 1245	1475 1440 1405 1385 1370	1365 1350 1335 1320 1295
900 LB.	850 900 950 1000 1050	805 515 310 155 -	805 515 310 155 –	805 515 310 155 -	1460 1350 845 495 -	1460 1350 1030 640 565	1460 1350 1130 670 410	1460 1350 1130 805 595	1315 1060 780 575 420	1460 1350 1110 875 565	1165 1150 1125 965 925	1215 1180 1160 1090 1080	1330 1295 1160 1090 1080	- - - -
	1100 1150 1200 1250 1300						290 155 105 - -	340 310 165 –	310 205 135 - -	340 225 155 – –	770 585 465 330 245	965 825 620 545 410	965 825 515 370 280	- - -
	1350 1400 1450 1500			- - -					- - -	- - -	185 145 105 70	310 225 175 125	205 155 125 105	- - -
	-20 to 100 200 300 400 500	3705 3375 3280 3170 2995	3470 3280 3190 3085 2910	3750 3750 3640 3530 3325	3470 3395 3260 3200 3105	3750 3750 3640 3530 3325	3750 3560 3365 3290 3210	3750 3580 3385 3240 3200	3750 3750 3640 3530 3325	3750 3750 3640 3530 3325	3600 3000 2640 2350 2185	3600 3095 2795 2570 2390	3600 3180 2940 2770 2590	3000 2785 2615 2405 2340
	600 650 700 750 800	2735 2685 2665 2520 2060	2665 2615 2590 2365 1955	3025 2940 2840 2520 2060	3025 2940 2840 2660 2540	3025 2940 2840 2660 2540	3025 2940 2840 2660 2540	3025 2940 2840 2660 2540	3025 2940 2840 2660 2485	3025 2940 2840 2660 2540	2075 2040 2015 1990 1970	2255 2220 2160 2110 2075	2460 2400 2340 2305 2280	2275 2250 2225 2200 2160
1500 LB.	850 900 950 1000 1050	1340 860 515 260 -	1340 860 515 260 -	1340 860 515 260 -	2435 2245 1405 825 –	2435 2245 1715 1065 945	2435 2245 1885 1115 684	2435 2245 1885 1340 995	2195 1765 1305 960 705	2435 2245 1850 1460 945	1945 1920 1870 1610 1545	2030 1970 1930 1820 1800	2220 2160 1930 1820 1800	- - - -
	1100 1150 1200 1250 1300						480 260 170 -	565 515 275 -	515 345 225 - -	565 380 260 - -	1285 980 770 550 410	1610 1370 1030 910 685	1610 1370 855 615 465	- - - -
	1350 1400 1450 1500	-			- - - -					- - -	310 240 170 120	515 380 290 205	345 255 205 170	- - -

Note: For welding end valves only. (1) Flanged end ratings terminate at 1000°F. Footnotes:

a) Permissible, but not recommended for prolonged usage above about 800°F.
b) Permissible, but not recommended for prolonged usage above about 850°F.
d) Not to be used over 650°F.
e) Not to be used over 700°F.
f) Not to be used over 850°F.
g) Not to be used over 850°F.
h) Not to be used over 1000°F.
h) Not to be used over 1000°F.
h) Not to be used over 1000°F.

INTRODUCTION TO STEAM TRAPS

WHAT IS A STEAM TRAP AND WHAT DOES IT DO?

A steam trap is an automatic valve that allows condensate, air and other non-condensable gases to be discharged from the steam system while holding or trapping the steam in the system. Several different types of steam trap technologies exist to accomplish this extremely critical and necessary task.

WHY ARE STEAM TRAPS REQUIRED?

For any steam system to operate properly the <u>condensate</u>, <u>air</u> and <u>other non-condensable gases</u> such as carbon dioxide must be removed from the steam system. This is the purpose of the steam trap.

CONDENSATE:

When steam releases its heat energy, the steam reverts back to water. This occurs in a heat exchanger making hot water, in a radiator heating a room, or in a steam pipe transferring steam. This water, technically referred to as *condensate*, must be removed from the system or the system would back up with water. The removal of condensate from the steam system is considered the primary function of the steam trap.

AIR:

Air exists in all steam pipes prior to system start-up when the system is cold. This air must be bled out of the piping system so that the steam can enter and eventually reach the designated process applications. If the air is not removed, the steam will effectively be blocked from entering the steam pipes by the residual air. In addition to blocking the steam, air acts as an insulator to heat transfer. Even after the system is filled with steam, small amounts of air can re-enter the system thru various paths such as boiler water make-up systems, vacuum breakers and air vents.

NON-CONDENSABLE GASES:

Gases other than air such as carbon dioxide exist inside steam systems. These non-condensable gases must also be separated from the steam and removed from the system for all processes to operate properly. In addition to inhibiting steam flow and proper heat transfer, carbon dioxide can be very corrosive to components in the system.

STEAM TRAP GENERAL APPLICATION CATEGORIES:

DRIP APPLICATIONS:

Drip applications are by far the most common application for steam traps. This application refers to removing the condensate that forms in steam lines when steam loses its heat energy due to radiation losses. Traps used in these applications are referred to as *drip traps*. Generally speaking, traps used for these applications require relatively small condensate capacities and don't normally need to discharge large amounts of air. (Air removal is the primary function of air vents and process traps located throughout the system.) The most common trap choices for drip applications are *thermodynamic* for steam pressures over 30 PSIG, and *float & thermostatic* for pressures up to 30 PSIG. Inverted bucket traps are also commonly used for drip trap applications due to their ability to handle large amounts of dirt and scale often found in this type of application.

PROCESS APPLICATIONS:

Process trap applications refer to removing condensate and air directly from a specific heat transfer process such as a heat exchanger that could be making hot water or a radiator heating a room. Traps used in these applications are referred to as *process traps*. Generally speaking, traps used for process applications require larger condensate handling capability and also need to be able to discharge large amounts of air. The most common trap choices for process applications are *float* & *thermostatic* traps and *thermostatic* traps. Both are known for their excellent condensate and air handling capabilities. In contrast, thermodynamic traps and inverted bucket traps, which have poor air handling ability, would normally make a poor choice for process applications.

TRACING APPLICATIONS:

Steam tracing refers to using steam to indirectly elevate the temperature of a product using jacketed pipes or tubing filled with steam. A typical application would be wrapping a pipeline containing high viscosity oil with tracing tubing. The steam inside the tubing heats the oil to lower its viscosity, allowing it to flow easily thru the pipeline. Similar to any steam applications, a steam trap must be used on the end of the steam tubing to discharge unwanted condensate. Steam traps used in these applications are referred to as *tracing traps*. The most common trap choice for tracing applications is the *thermostatic* type.

STEAM TRAP APPLICATIONS INTRODUCTION TO STEAM TRAPS

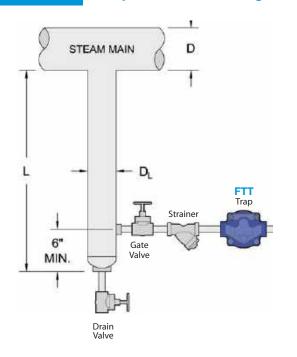
The **Thermodynamic Disc Trap** is simple and compact and an excellent choice for a wide variety of drip applications. They excel in drip applications of pressures ranging from 30 psig to high pressure applications exceeding 3,000 psig, including superheated steam. The ½" TD600L is suitable for most drip applications, and offers reduced size discharge orifice holes which are preferable in terms of performance, longevity, and efficiency.

The design of modern Thermostatic Bellows Traps allows these traps to be used on a wide variety of applications, from general service drips to small-tomedium process heating applications with relatively constant loads. The welded stainless steel bellows is extremely rugged which prevents failure from waterhammer and corrosion, making these traps suitable for demanding industrial service. Also, because thermostatic traps subcool condensate, the condensate discharged generates less flash steam which may be advantageous in certain installations. For these reasons, Thermostatic Bellows Traps can be considered as a primary selection or as an alternative to other styles.

The **Float & Thermostatic Trap** is the primary choice of steam trap for process applications. They are excellent at discharging air from the system during start-up and offer a wide range of capacities to accommodate the vast majority of process heating applications. Their design allows them to immediately respond to changing condensate loads and pressures, which is a typical requirement of continuous heating process applications where control valves are used to modulate steam flow. Available F&T models range from designs for low pressure

heating to high-pressure and capacity industrial applications requiring cast steel or stainless steel.

STEAM TRAP APPLICATIONS DRIP LEG DESIGN


PURPOSE: Drip Legs are used for removing condensate from steam transmission and distribution lines. This helps ensure high quality steam for use in various plant applications and also will prevent damaging and dangerous waterhammer.

OPERATION: As steam travels at high velocity through piping, condensate forms as the result of piping heat losses and/or improper boiler control resulting in condensate carryover. Drip legs are therefore located at points where condensate may accumulate to allow for drainage by gravity down to a steam trap for proper discharge from the system. Since condensate drains by gravity, drip legs must be located on the bottom of piping and designed with diameters large enough to promote collection.

INSTALLATION GUIDELINES: (see Figure 1)

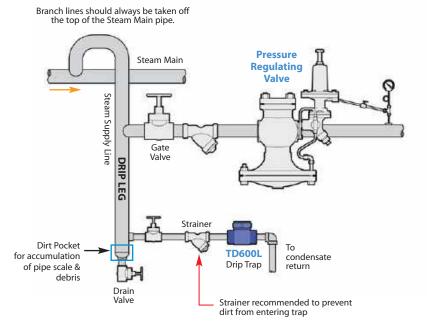
- For drainage of steam transmission and distribution lines, drip legs should be located at bends in piping (direction changes), low points, end of line, and in straight run of piping every 200 feet.
- For protection of equipment such as regulators and control valves, drip legs should be installed directly ahead of the regulating or control valve line.
- Proper steam trap selection for drip applications is dependent upon application requirements, such as
 pressure, number of and distance between installed steam traps, ambient conditions, start-up requirements,
 etc. A commonly accepted practice is to use float & thermostatic (F&T) steam traps for low pressure steam
 systems up to 30 PSIG, and thermodynamic steam traps for steam pressures over 30 PSIG.
- Because condensate drainage from steam systems is dependent upon gravity, drip leg diameter is critical for optimum removal larger is better. Collection leg diameter (D_L) is recommended to be the same size as the steam main (D), up to 4". For steam mains above 4", the collection leg diameter may be half the diameter of the main, but not less than 4". The length (L) of the drip leg for systems with <u>automatic</u> start-up should be a minimum of 28" to provide approximately 1 PSI head pressure. The length (L) of the drip leg for systems with <u>supervised</u> start-up should be 1.5 x D_L, but not less than 8".
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- A drain valve is included at the bottom of the collection leg for manual discharge of condensate during supervised start-up. The drain valve should be located at least 6" below the steam trap line.
- An isolation valve and strainer should be installed before the steam trap. The isolation valve simplifies maintenance of the trap and the strainer protects the trap from any dirt, debris or scale in the line.

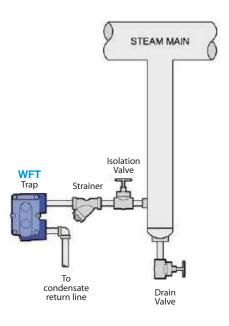
Figure 1: Proper DRIP LEG Designs

DRIP LEG DESIGN CRITERIA:

 Locate prior to valves, bends in pipe (direction changes), low points, end of line and straight piping runs (max. 200 ft. apart).

2) Diameter:


- Drip leg diameter (DL) to be equal to steam main diameter (D) for steam main sizes up to 4"
- Drip leg diameter (D∟) may be half the steam main diameter (D) for steam main sizes over 4", but not less than 4"


3) Length (L):

- For systems with automatic start-up, L to be 28" minimum (= 1 PSI minimum head pressure)
- \bullet For systems with supervised start-up, L to be 1.5 x DL, but not less than 8"

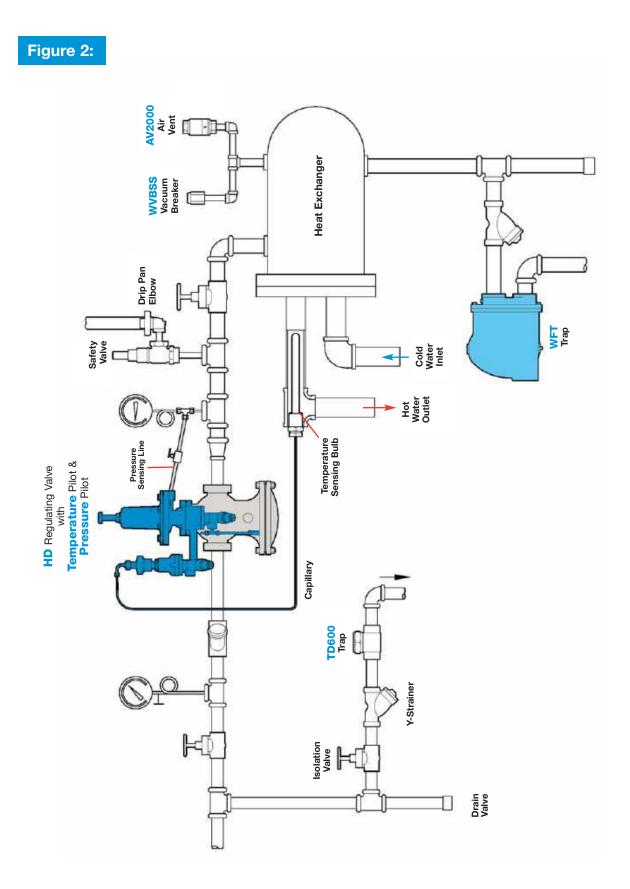
DRIP LEG Before Regulator or Control Valve

DRIP LEG Draining Steam Main

STEAM TRAP APPLICATIONS

PROCESS TRAP GUIDELINES - Gravity Drainage

PURPOSE: For removing condensate from below steam heat transfer equipment to ensure optimum heating under various load conditions.


OPERATION: Steam used to heat product such as water in a heat exchanger condenses to liquid after passing though the heat exchanger and releasing its heating energy. To ensure optimum heating, this condensate is removed through an adequately sized drip leg and steam trap properly selected for the application and installed below the equipment. A Float and Thermostatic (F&T) steam trap is often an appropriate choice due to its modulating discharge and air venting capability.

INSTALLATION GUIDELINES: (see Figure 2)

- Selection and sizing of the process steam trap is critical to proper operation. A safety load factor (SLF) is
 applied to accommodate load variations, as well as high start-up requirements. Consult appropriate sections
 of this catalog or the factory for guidelines regarding proper process steam trap selection and sizing.
- The collecting leg to the process trap should be no smaller than the designed condensate outlet of the heat transfer equipment. Note that some steam trap technologies such as thermostatic require extended distance between the heat exchanger and steam trap to allow for back-up of subcooled condensate.
- The process trap should be located 2.3 feet (28") below the condensate outlet of the heat exchanger to provide a minimum of 1 PSI head pressure.
- The drip leg and steam trap prior to the regulating valve protect the valve from condensate, as well as ensure the best quality steam for heat transfer. Note the take-off from the top of the steam main to avoid condensate that would collect on the bottom of the main piping.
- The vacuum breaker and auxiliary air vent located at the top of the heat exchanger vessel promotes proper drainage and optimum heat transfer. The vacuum breaker allows system equalization with atmospheric air to allow gravity condensate drainage when vacuum is formed from condensing steam. The air vent improves heat-up times and overall heat transfer by expelling accumulated air on start-up.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- An isolation valve and strainer should be installed before any steam trap. The isolation valve simplifies maintenance of the trap and the strainer protects the trap from any dirt, debris or scale in the line.

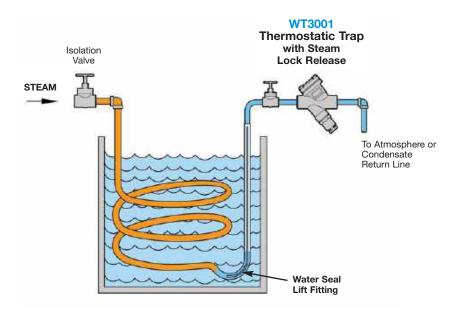
STEAM TRAP APPLICATIONS

PROCESS TRAP GUIDELINES - Gravity Drainage

Shell & Tube Heat Exchanger with Gravity Drainage of Condensate

STEAM TRAP APPLICATIONS

PROCESS TRAP GUIDELINES – Syphon Drainage

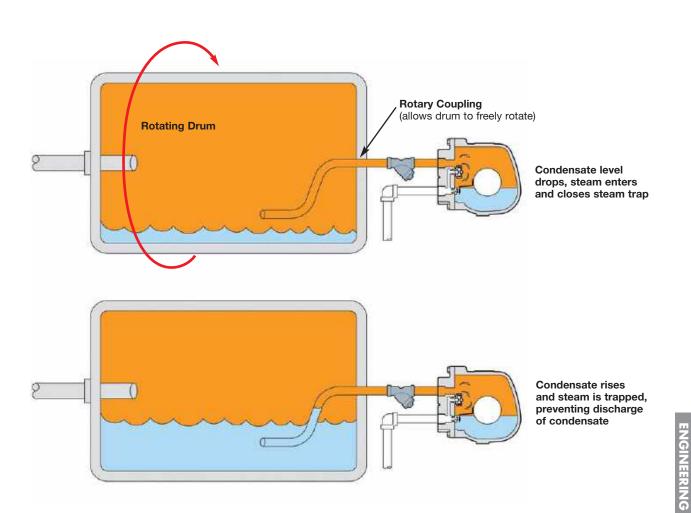

- **PURPOSE:** For removing condensate from steam heat transfer equipment when the steam trap is to be installed *above* the point where condensate will collect.
- **OPERATION:** When steam is used to heat liquid in a tank with a submerged coil or a rotary drum dryer, gravity drainage to the steam trap is not possible. For these applications, it is necessary to install the steam trap above the drain point of the equipment by creating a syphon lift to allow for proper condensate drainage.

INSTALLATION GUIDELINES: (see Figure 3)

- There are two critical requirements to ensure proper operation of syphon lift process drainage systems: A <u>water seal lift fitting</u> and a <u>steam trap with a function to prevent steam lock</u> (often referred to as Steam Lock Release or SLR).
- The lift fitting on a submerged coil provides a water seal to stop steam from pushing past the condensate and reaching the steam trap, preventing a vapor-lock condition of the trap.
- Steam Lock Release (SLR) is provided on the steam trap to ensure the syphon lift remains continuous by
 preventing steam from becoming trapped or locked between the cavity of the steam trap and incoming
 condensate. The SLR function allows any small portion of trapped steam to be automatically removed from
 the system, allowing continuous drainage.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- An isolation valve and strainer should be installed before any steam trap. The isolation valve simplifies maintenance of the trap and the strainer protects the trap from any dirt, debris or scale in the line.

Figure 3: SUBMERGED COIL FOR HEATING LIQUID

Steam Lock Release Mechanism must be used when trap is positioned above condensate level.


ROTATING STEAM DRYER

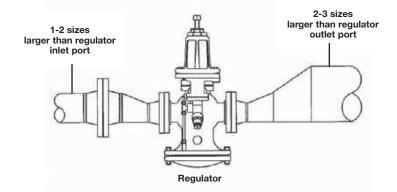
Commonly found in the Paper Making industry, a rotating piece of equipment offers a unique challenge of removing the condensate. Steam inside a rotating drum cylinder is used to heat product such as sheets of paper over the outside surface of the drum. The steam pressure pushes the condensate up through the pipe to the steam trap. Since the pipe that the condensate is traveling through is surrounded by steam, an issue can develop that will "**Steam Lock**" the trap causing the trap to stay closed, allowing the condensate to build up inside the rotating drum (Figure 4). By placing a **Steam Lock Release** feature on the Steam Trap, a small amount of steam will be constantly discharged through the trap. This allows condensate to reach the steam trap which causes it to open and function properly. This steam lock release feature is available on ALL F&T and Thermostatic traps and should be considered on this type of application.

Figure 4: Rotating Steam Dryer Illustrating "Steam Lock"

Steam Lock Release Option

must be used when trap is positioned above condensate level.

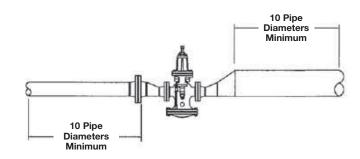
General Installation Guidelines


Regulator Application & Installation Notes

The following are considerations for all steam regulator installations, as system operation is dependent upon proper design, installation, start-up and maintenance procedures:

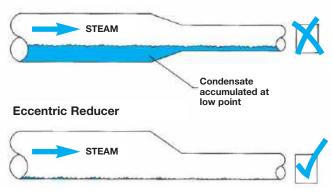
Inlet & Outlet Pipe Sizing

Improperly sized piping can contribute to excessive noise in a steam system. Make certain inlet and outlet piping to the regulator is adequately sized for the flow, velocity and pressure requirements.


Inlet piping can be 1-2 sizes larger and outlet piping 2-3 sizes larger than the connection ports of a properly sized regulator.

Straight Run of Pipe Before and After the Valve

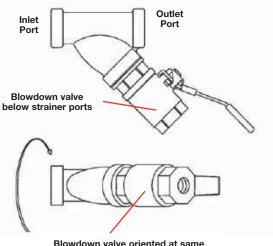
Pipe fittings, bends and other accessories contribute to fluid turbulence in a system which can result in erratic control. To limit this and ensure optimum system operation, follow recommended guidelines for minimum straight run lengths of pipe before and after a regulator.


Note: Any isolation valves or pipeline accessories should be full-ported.

Reducer Selection

Concentric pipe reducers should be avoided on the inlet side of regulators as they can allow entrained condensate to collect, potentially leading to damaging and dangerous waterhammer. Therefore, when reducers are required in the steam piping to accommodate properly sized valves and pipes, <u>use eccentric reducers on regulator inlets</u> and concentric or eccentric reducers on regulator outlets.

Concentric Reducer

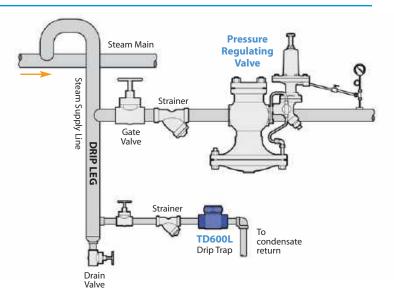


General Installation Guidelines

Strainers with Blowdown Valves

Regardless of any filters provided on a regulator, a strainer with blowdown valve is recommended before (upstream of) all regulator installations. Pipeline debris and scale can damage internal valve components, potentially leading to poor operation and/or failure.

Note: Consider strainer orientation to avoid collection of condensate (see diagram).



elevation as strainer ports to avoid condensate collection

Drip Legs & Steam Traps

To prevent condensate accumulated during shutdown from possibly damaging the regulator or piping at start-up, an adequately sized drip leg with steam trap should be installed prior to all regulators. This will also help protect the regulator during normal operation.

Note: Separators may be necessary when boiler carryover or "wet" steam is a concern.

Proper Start-up & Maintenance Procedures

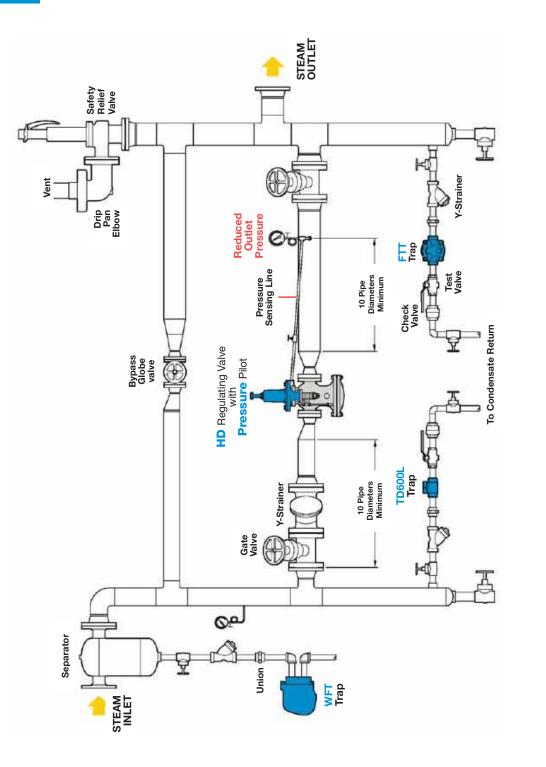
It is important to follow good start-up practices to avoid operational complications and potential system damage. Starting a steam system too quickly or using an improper sequence may lead to a potentially hazardous working environment. Lack of system maintenance over time can also contribute to this situation.

It is imperative to develop proper start-up and maintenance procedures and train personnel on the importance of following them at all times.

Consult equipment manufacturers for specific guidelines, if necessary.

PRESSURE REDUCING STATION • Using Spring-Loaded Pilot

PURPOSE: For reducing system inlet pressure to a constant outlet pressure.


OPERATION: The pressure reducing valve (PRV) can be easily adjusted to set the desired outlet pressure and modulates to maintain that pressure setting. The PRV requires no external power source.

INSTALLATION GUIDELINES: (see Figure 5)

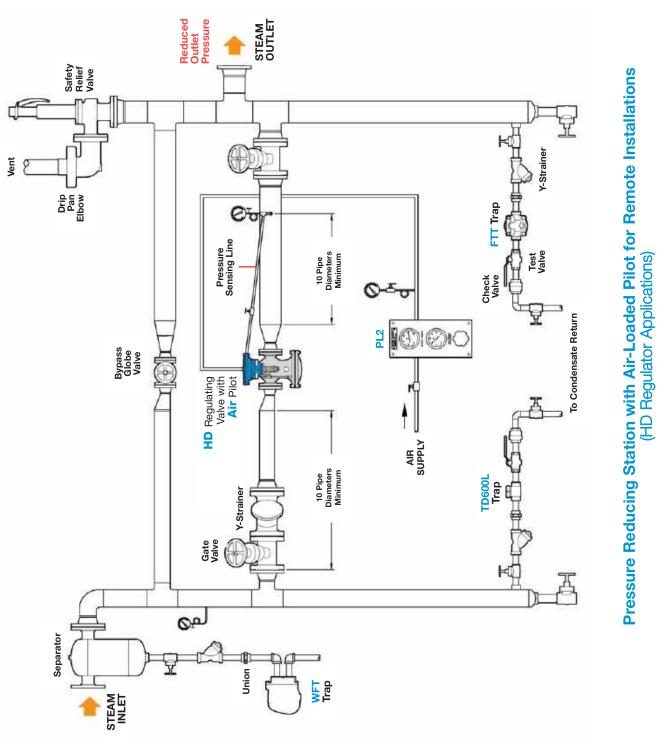
- This example depicts a pilot-operated steam PRV, whereby an external sensing line is required to sense downstream pressure. The end of the sensing line is placed away from the turbulent flow of the valve outlet. This helps to improve accuracy of the set pressure. Set pressure is adjusted by turning a screw on the pilot to increase or decrease compression on a balancing spring.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the PRV. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized PRV. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- The pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While the separator shown upstream is appropriate for protection of the PRV, it is not always required as a properly sized drip leg with steam trap may sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider installing a properly sized bypass line with globe valve to provide continuous operation should regulator maintenance be required.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging
 into condensate return lines. Check valves eliminate the possibility of condensate backing up through the
 steam trap into the system.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. The SRV needs to handle
 the complete volume of steam from the regulator and bypass loop. Consult the factory for appropriate SRV
 sizing guidelines.

PRESSURE REDUCING STATION • Using Spring-Loaded Pilot

SINGLE STAGE Pressure Reducing Station using Spring-loaded Pilot (HD Regulator Applications)

PRESSURE REDUCING STATION • Using Air-Loaded Pilot

PURPOSE: For reducing system inlet pressure to a constant outlet pressure when valve is located in a remote location and/or using air pressure for control is desired.

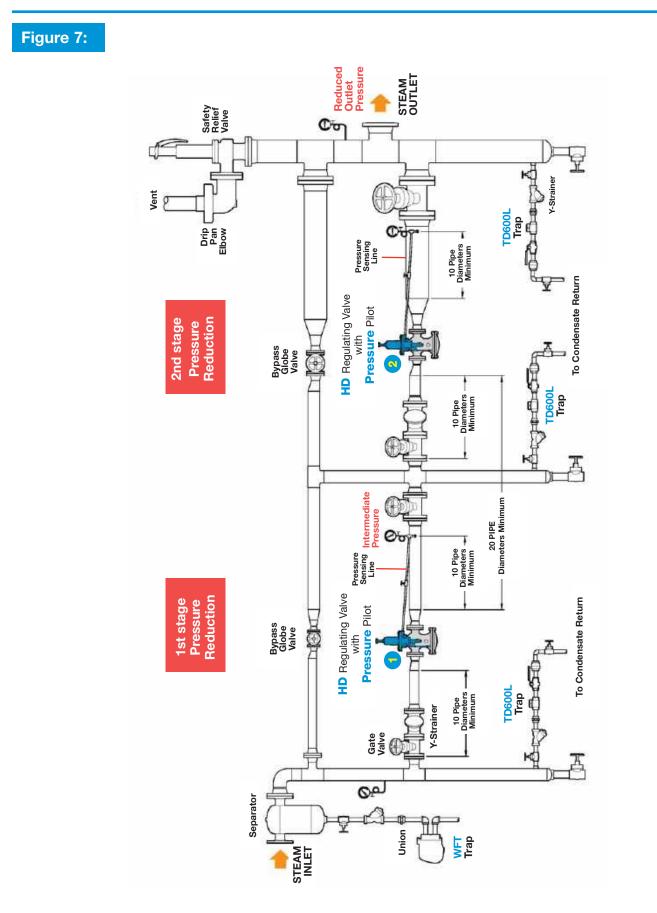

OPERATION: This combination of HD regulating valve and PA-pilot allows air to be used to control outlet pressure in lieu of the spring of a standard PP-pilot. Using air allows for simple adjustment of control pressure when valve is installed in a remote and/or difficult to access location.

INSTALLATION GUIDELINES: (see Figure 6)

- The desired set outlet pressure will determine the specific PA-Pilot required as well as the air supply pressure to attain the set pressure. Consult the appropriate section of this catalog or the factory for selection guidelines.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the PRV. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized PRV. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- The pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While the separator shown upstream is appropriate for protection of the PRV, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider installing a properly sized bypass line with globe valve to provide continuous operation should regulator maintenance be required.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. The SRV needs to handle
 the complete volume of steam from the regulator and bypass loop. Consult the factory for appropriate SRV
 sizing guidelines.

PRESSURE REDUCING STATION • Using Air-Loaded Pilot

Figure 6:


PRESSURE REDUCING STATION • 2-Stage (Series) for High Pressure Turndown

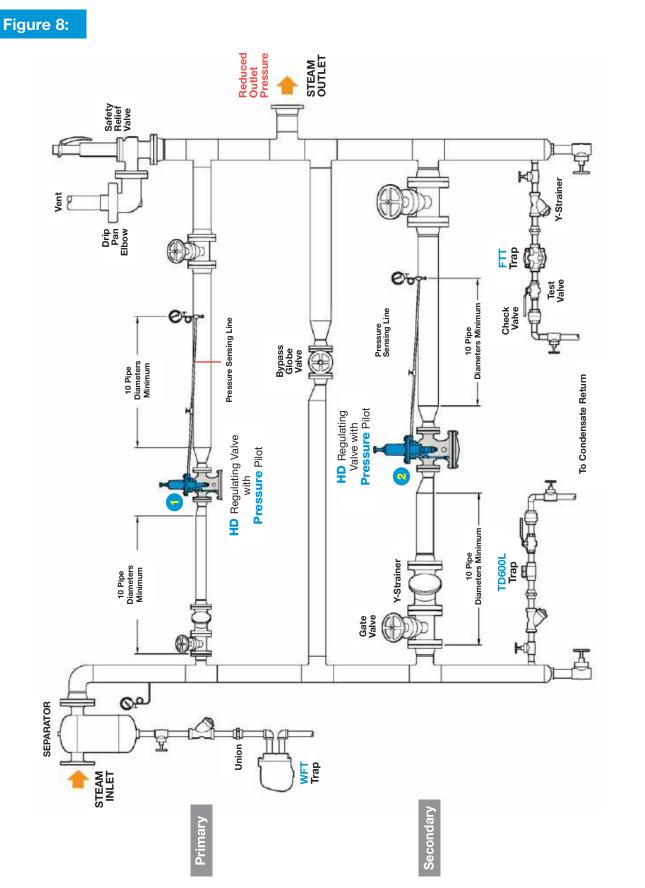
- **PURPOSE:** For reducing steam system inlet pressure to a constant outlet pressure when the pressure drop exceeds the recommended operation of a single-stage pressure regulating valve (PRV). This will help reduce overall velocity, resulting in less noise and improved equipment service life.
- **OPERATION:** The 1st stage PRV is selected to reduce the initial steam pressure to a reasonable pressure between the initial inlet and desired outlet delivery pressure. This intermediate pressure is typically selected to ensure that each PRV is within recommended turndown guidelines. However, it is also possible there will be a use for steam at a specific intermediate pressure, which must be considered when evaluating turndown and sizing guidelines. The 2nd stage PRV, installed in series with the 1st stage, then reduces pressure to the final outlet delivery pressure. Individual valve setting and operation is the same as for single-stage applications.

INSTALLATION GUIDELINES: (see Figure 7)

- This example depicts a two-stage (series) pilot-operated steam PRV pressure reducing station using HD Regulators with Pressure Pilot. An external sensing line is required to sense downstream pressure from each regulator. The end of each sensing line is placed away from the turbulent flow at the valve outlet. This helps to improve accuracy of the set pressures. Set pressure for each PRV is adjusted by turning a screw on the pilot to increase or decrease compression on a balancing spring.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the PRV. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized PRV. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- Each pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While the separator shown upstream is appropriate for protection of the PRVs, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider installing a properly sized bypass line with globe valve on each stage, to provide continuous operation should regulator maintenance be required.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging
 into condensate return lines. Check valves eliminate the possibility of condensate backing up through the
 steam trap into the system.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. The SRV needs to handle
 the complete volume of steam from the regulator and bypass loop. Consult the factory for appropriate SRV
 sizing guidelines.

PRESSURE REDUCING STATION • 2-Stage (Series) for High Pressure Turndown

Two-Stage (Series) Pressure Reducing Station (HD Regulator Applications)


PRESSURE REDUCING STATION • Parallel for High Flow Turndown

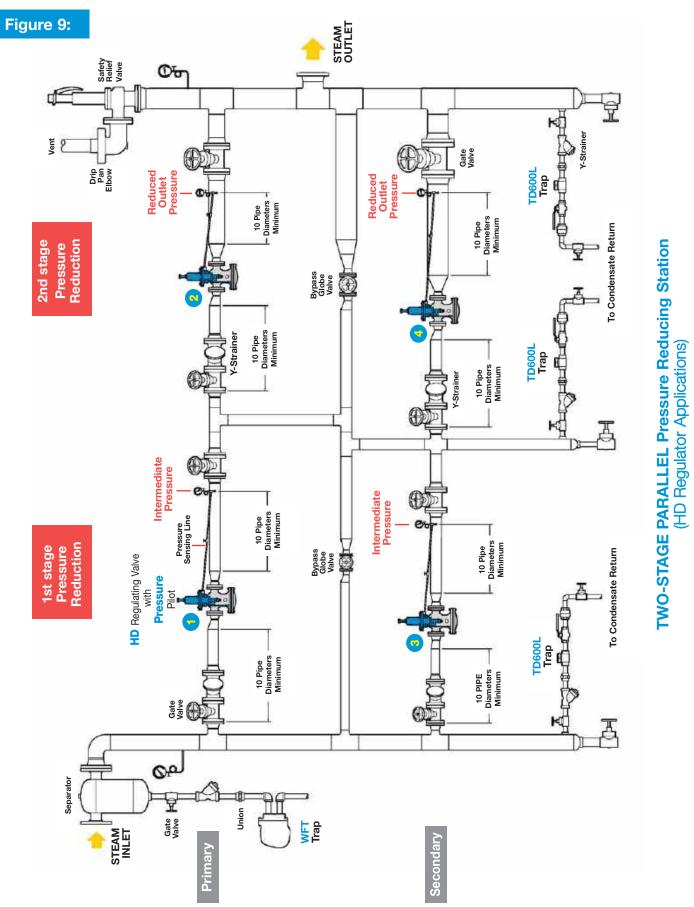
- **PURPOSE:** For reducing steam system inlet pressure to a constant outlet pressure when steam flow rates vary widely. This will help improve system rangeability resulting in more accurate control.
- **OPERATION:** Because regulators are simple, self-powered devices which do not rely on an external control signal to determine valve steam position, they may not have the flow rangeability of control valves. Therefore, if a system has large flow variations (such as summer and winter loads), multiple regulators should be considered. Typically referred to as a 1/3 2/3 system, one valve may be sized for approximately 1/3 of the total maximum load demand and a larger valve for the remaining 2/3. When full load is required, both valves will be open and regulating. The small regulator is typically the primary valve and is set at a pressure 2 psi higher than the larger secondary valve. This allows the small regulator to be the only one flowing when demand is low. When flow increases and the small valve cannot keep up with the demand, the downstream pressure will begin to drop which will allow the larger secondary valve to open in order to help satisfy the demand. Although the smaller regulator is commonly selected as the primary valve, either the smaller or larger regulator may be set as the primary valve based on anticipated load demand requirements. The primary valve should always be set a minimum of 2 psi above the secondary valve.

INSTALLATION GUIDELINES: (see Figure 8)

- This example depicts a parallel pilot-operated steam PRV pressure reducing station using HD Regulators with Pressure Pilot. An external sensing line is required to sense downstream pressure from each regulator. The end of each sensing line is placed away from the turbulent flow at the valve outlet. This helps to improve accuracy of the set pressures. Set pressure for each PRV is adjusted by turning a screw on the pilot to increase or decrease compression on a balancing spring.
- Proper setting of the valves is key to proper operation. The chosen primary valve should be set at a pressure approximately 2 PSI higher than that of the secondary valve.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the PRV. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized PRV. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- Each pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While the separator shown upstream is appropriate for protection of the PRV, it is not always required, as a
 properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known
 to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider installing a properly sized bypass line with globe valve to provide continuous operation should regulator maintenance be required.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging
 into condensate return lines. Check valves eliminate the possibility of condensate backing up through the
 steam trap into the system.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. The SRV needs to handle
 the complete volume of steam from the regulator and bypass loop. Consult the factory for appropriate SRV
 sizing guidelines.

PRESSURE REDUCING STATION • Parallel for High Flow Turndown

PRESSURE REDUCING STATION • for Combination High Pressure & High Flow Turndown


PURPOSE: For reducing steam system inlet pressure to a constant outlet pressure when flow conditions vary widely combined with a high pressure drop (i.e. higher than the recommended range of a single-stage regulator).

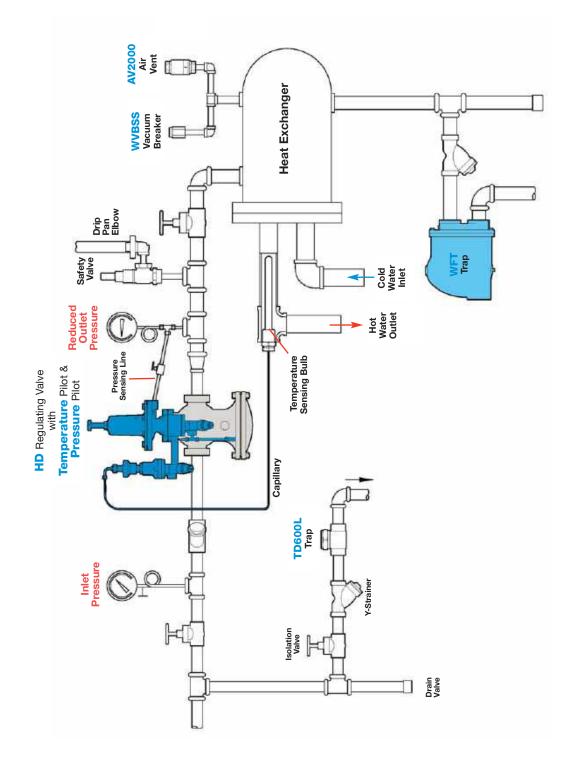
OPERATION: This system is a combination of Two-Stage (Series) and Parallel pressure reducing stations and operates based on the individual principles of each system. Each series of valves will be sized to handle a portion of the total maximum load demand, typically 1/3 and 2/3 of the total anticipated flow. If the smaller series of valves is determined to operate as the primary, then the 2nd stage valve will be set 2 psi higher than the 2nd stage valve in the secondary series. This allows the primary series to be the only one flowing when demand is low. When flow increases and the primary series cannot keep up with demand, the downstream pressure will being to drop which will allow the larger secondary series of valves to open in order to help satisfy the demand.

INSTALLATION GUIDELINES: (see Figure 9)

- This example depicts a two-stage parallel pilot-operated steam PRV pressure reducing station using HD Regulators with Pressure Pilot. An external sensing line is required to sense downstream pressure from each regulator. The end of each sensing line is placed away from the turbulent flow at the valve outlet. This helps to improve accuracy of the set pressures. Set pressure for each PRV is adjusted by turning a screw on the pilot to increase or decrease compression on a balancing spring.
- Proper setting of the valves is key to proper operation. The chosen 1st stage primary valve should be set at a pressure approximately 2 PSI higher than that of the 1st stage secondary valve.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the PRV. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized PRV. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- Each pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While the separator shown upstream is appropriate for protection of the PRVs, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider installing a properly sized bypass line with globe valve on each stage, to provide continuous operation should regulator maintenance be required.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging
 into condensate return lines. Check valves eliminate the possibility of condensate backing up through the
 steam trap into the system.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. The SRV needs to handle
 the complete volume of steam from the regulator and bypass loops. Consult the factory for appropriate SRV
 sizing guidelines.

PRESSURE REDUCING STATION • for Combination High Pressure & High Flow Turndown

TEMPERATURE CONTROL • of Heat Exchanger with Pressure Limiting Pilot


- **PURPOSE:** For accurately controlling both temperature of a product being heated in heat transfer equipment as well as limiting the pressure of the incoming steam, providing optimum heat transfer characteristics.
- **OPERATION:** When a pilot-operated HD valve is selected, a single valve can be used for both pressure and temperature control when equipped with a PP-Pilot and PT-Pilot. As temperature at the sensing bulb falls below set point, the valve begins to modulate open to supply steam for heating. Supply pressure to the heat exchanger is them limited by adjusting the pressure pilot to the recommended value for optimum heat transfer and/or a limiting pressure of the heat transfer equipment. The HD Regulator with combination PT & PP Pilots requires no external power source.

INSTALLATION GUIDELINES: (see Figure 10)

- The temperature and pressure pilots should be set individually, starting slowly and gradually with the PT-pilot.
- •1 Care should be given to the installation of the temperature sensing bulb to ensure full immersion in the liquid. The sensing bulb should be placed as close as possible to the heat exchanger vessel to ensure accurate temperature control of the process fluid.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the Regulator. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized Regulator. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- The pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While a separator is appropriate for protection of the Regulator, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- The vacuum breaker and auxiliary air vent located at the top of the heat exchanger vessel promotes proper drainage and optimum heat transfer. The vacuum breaker allows system equalization with atmospheric air to allow gravity condensate drainage when vacuum is formed from condensing steam. The air vent improves heat-up times and overall heat transfer by expelling accumulated air on start-up.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. Consult the factory for
 appropriate SRV sizing guidelines.

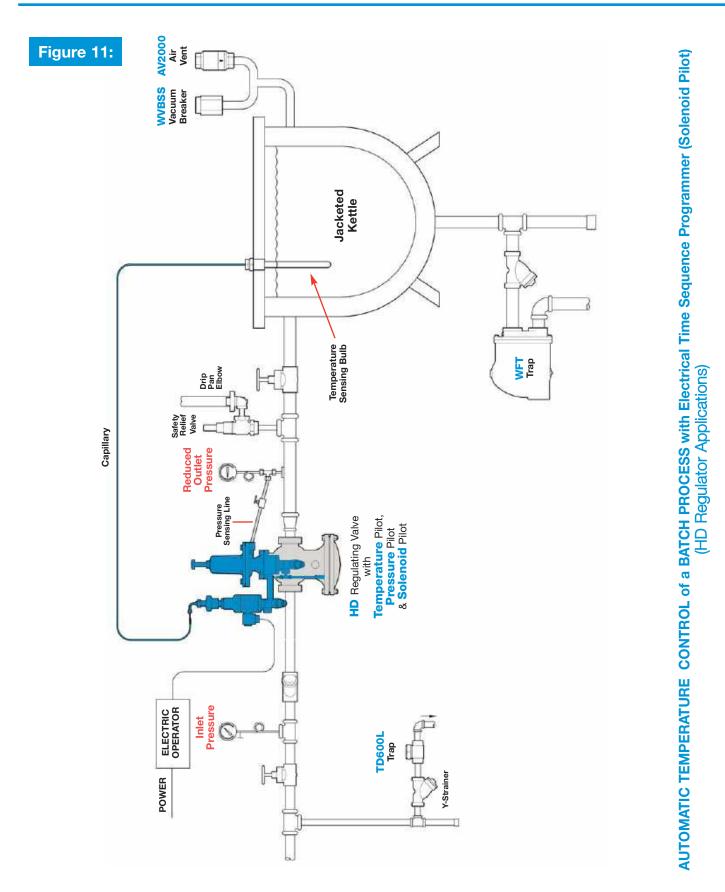
REGULATING VALVE APPLICATIONS TEMPERATURE CONTROL • of Heat Exchanger with Pressure Limiting Pilot

Figure 10:

Temperature Control of a Heat Exchanger with Pressure Limiting (HD Regulator Applications)

TEMPERATURE CONTROL of a BATCH PROCESS with Electrical Time Sequence Programmer (Solenoid Pilot)

PURPOSE: For accurately controlling temperature of a batch process where on-off operation is to be electronically controlled.


OPERATION: Operation is similar to that of the pressure and temperature combination pilot-operated regulator whereby the temperature (PT) pilot senses the temperature of the heated product (e.g. water) and appropriately modulates the flow of steam. Pressure is limited by the pressure (PP) pilot. The solenoid valve (PS-pilot) is electronically activated to control on-off operation of the batch process.

INSTALLATION GUIDELINES: (see Figure 11)

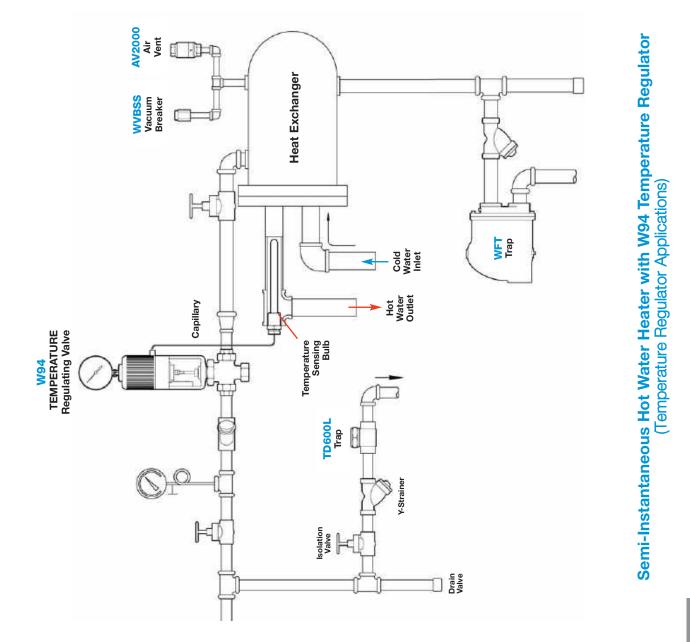
- The temperature and pressure pilots should be set individually, starting slowly and gradually with the PT-pilot.
- For optimum operation and service life, maintain recommended minimum piping straight runs before and after the PRV. Inlet pipe diameters could be 1-2 sizes larger and outlet pipe diameters 2-3 sizes larger than the end connections of an appropriately sized Regulator. The purpose of increasing the pipe size downstream of the regulator is to keep the steam velocity constant on both sides of the regulator.
- The pressure sensing line should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While a separator is appropriate for protection of the Regulator, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- The vacuum breaker and auxiliary air vent located at the top of the jacketed kettle vessel promotes proper drainage and optimum heat transfer. The vacuum breaker allows system equalization with atmospheric air to allow gravity condensate drainage when vacuum is formed from condensing steam. The air vent improves heat-up times and overall heat transfer by expelling accumulated air on start-up.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere protection of downstream piping and equipment from over-pressurization is desired. Consult the factory for appropriate SRV sizing guidelines.

TEMPERATURE CONTROL

of a BATCH PROCESS with Electrical Time Sequence Programmer (Solenoid Pilot)

TEMPERATURE CONTROL of a SEMI-INSTANTANEOUS HEATER using a Self-Contained Temperature Regulating Valve

PURPOSE: For accurate control of the temperature of a product being heated when the benefits of a self-contained regulator are required.

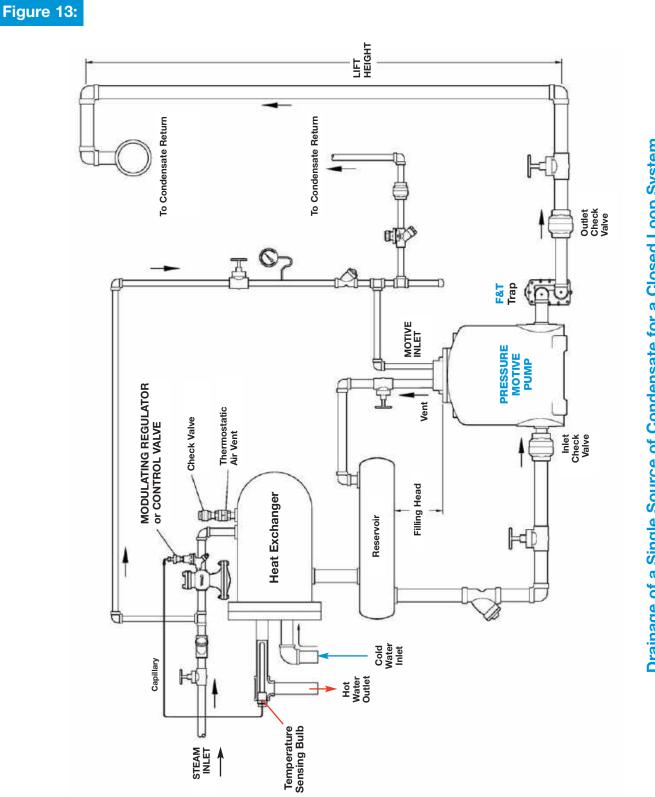

OPERATION: A self-contained temperature regulating valve (TRV) such as the W94, offers response times and characteristics suitable for semi-instantaneous heating applications. The temperature sensing bulb senses the temperature of the liquid being heated and allows modulation of the valve for appropriate supply of steam.

INSTALLATION GUIDELINES: (see Figure 12)

- Care should be given to the installation of the temperature sensing bulb to ensure full immersion in the liquid. The sensing bulb should be placed as close as possible to the heater tank to ensure accurate temperature control of the process fluid.
- All pressure sensing lines should slope downwards, away from the regulator, to prevent condensate from entering the pilot.
- Eccentric reducers, if required, are used on valve inlets to prevent accumulation of condensate which could become entrained with high-velocity steam, possibly resulting in dangerous waterhammer.
- While a separator is appropriate for protection of the Regulator, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Consider low-cracking pressure (1/4 PSI opening pressure) check valves after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- The vacuum breaker and auxiliary air vent located at the top of the heater tank promotes proper drainage and optimum heat transfer. The vacuum breaker allows system equalization with atmospheric air to allow gravity condensate drainage when vacuum is formed from condensing steam. The air vent improves heat-up times and overall heat transfer by expelling accumulated air on start-up.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. The SRV needs to handle
 the complete volume of steam from the regulator and bypass loop. Consult the factory for appropriate SRV
 sizing guidelines.

TEMPERATURE CONTROL of a SEMI-INSTANTANEOUS HEATER using a Self-Contained Temperature Regulating Valve

Figure 12:


CONDENSATE DRAINAGE • using Pump-Trap

- **PURPOSE:** For removing condensate from below steam heat transfer equipment when a modulating valve is used for control, and condensate discharge is elevated and/or pressurized, resulting in Stall condition.
- **OPERATION:** The Pressure Motive Pump (PMP) is used to overcome the stall condition that exists when steam feeding a single piece of heat transfer equipment is controlled by a modulating steam valve and steam pressure falls below system back pressure as the valve closes. A steam trap is required after the PMP to prevent the loss of live steam when the system is under positive pressure. Operating as a closed loop provides an energy-efficient system by eliminating the need to vent flash steam.

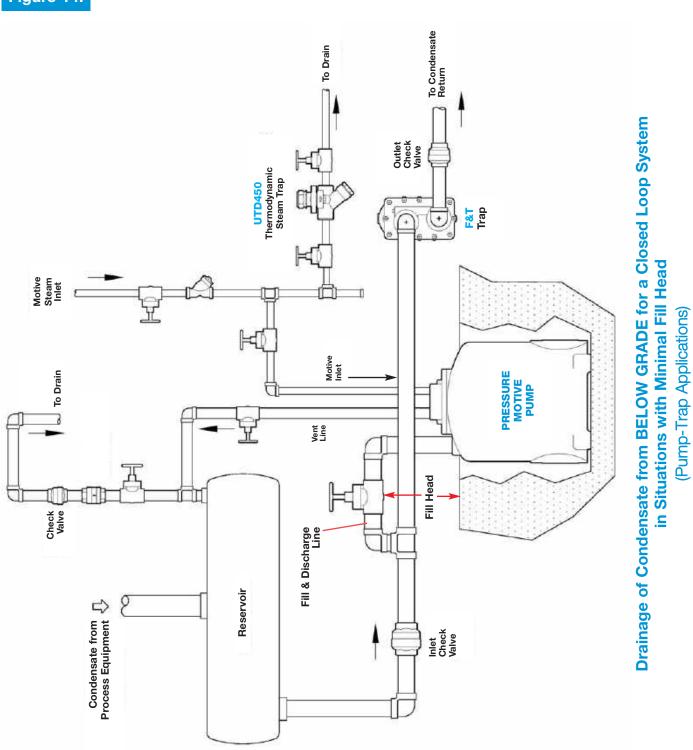
INSTALLATION GUIDELINES: (see Figure13)

- Proper installation and piping of the pump vent line is critical to ensure the system operates correctly. Follow guidelines or consult factory for additional information.
- Maintain proper fill head above the top of the pump to ensure proper function of the pump and system. A suitably sized reservoir or oversized piping should be installed ahead of the pump for accumulation of condensate during the pump's discharge cycle (i.e. when not filling).
- The steam trap after the pump must be sized in conjunction with the pump to ensure proper function as a system. Improper sizing may result in reduced capacity leading to condensate back-up, poor heat transfer and potentially dangerous waterhammer. Consult appropriate sections of this catalog or the factory for guidelines regarding proper sizing of the pump-trap combination.
- While a separator is appropriate for protection of the Regulator, it is not always required, as a properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Low-cracking pressure (1/4 PSI opening pressure) check valves should be installed after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- The thermostatic air vent installed on the heat exchanger promotes optimum heat transfer. The air vent improves heat-up times and overall heat transfer by expelling accumulated air on start-up. When properly sized and installed, the pump-trap combination can operate in sub-atmospheric (i.e. vacuum) conditions; therefore, a vacuum breaker should not be used.

CONDENSATE DRAINAGE • using Pump-Trap

Drainage of a Single Source of Condensate for a Closed Loop System (Pump-Trap Applications)

CONDENSATE DRAINAGE from Below Grade • using Pump-Trap


- **PURPOSE:** For drainage of condensate from below process equipment where fill head is limited due to height restrictions and the pump must be installed below grade.
- **OPERATION:** When fill head is restricted and it is more suitable to create a pit below grade than reposition process equipment, the Pressure Motive Pump (PMP) may be modified so both condensate inlet and outlet connections are on top to limit the necessary pit size. When stall exists, condensate will accumulate between the inlet and outlet check valves and eventually drain into and fill the PMP tank. Once the PMP fills and its mechanism trips, high pressure motive steam will enter the pump tank and force condensate back out the same connection. The check valves will direct the flow of pumped condensate into the return piping.

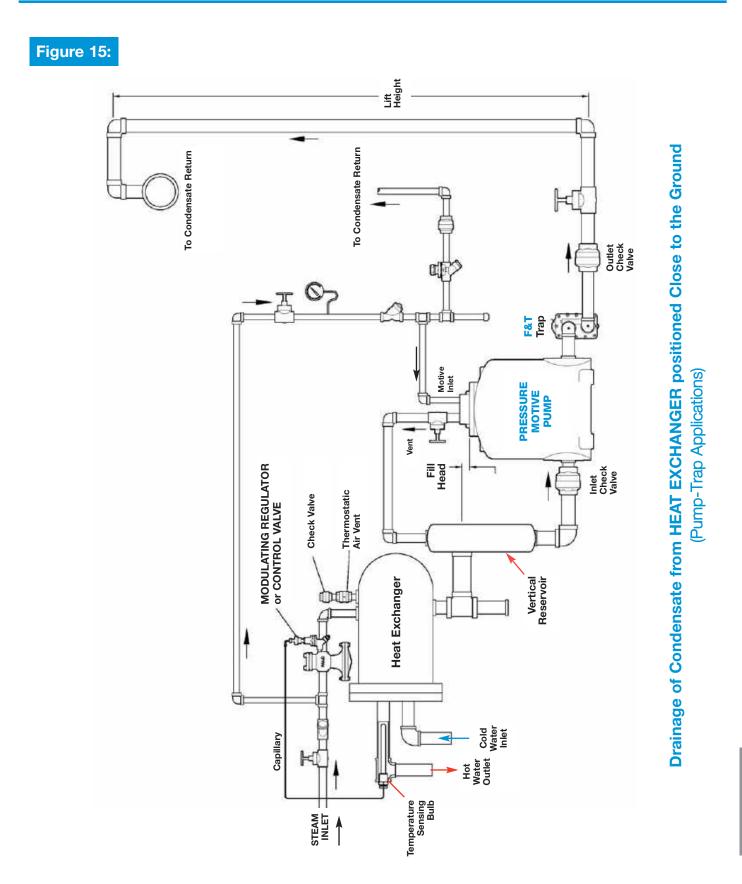
INSTALLATION GUIDELINES: (see Figure 14)

- The positioning of the check valves and PMP fill/discharge line are the key elements which allow the system to function properly. The check valves dictate the proper direction of condensate flow for both fill and discharge cycles of the PMP. The PMP fill/discharge line should be taken off the top, as shown, so condensate only accumulates and fills the pump during stall.
- Proper installation and piping of the pump vent line is critical to ensure the system operates correctly. Follow guidelines or consult factory for additional information.
- Maintain proper fill head above the top of the pump to ensure proper function of the pump and system. A suitably sized reservoir or oversized piping should be installed ahead of the pump for accumulation of condensate during the pump's discharge cycle (i.e. when not filling).
- The steam trap after the pump must be sized in conjunction with the pump to ensure proper function as a system. Improper sizing may result in reduced capacity leading to condensate back-up, poor heat transfer and potentially dangerous waterhammer. Consult appropriate sections of this catalog or the factory for guidelines regarding proper sizing of the pump-trap combination.
- Low-cracking pressure (1/4 PSI opening pressure) check valves should be installed after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.

CONDENSATE DRAINAGE from Below Grade • using Pump-Trap

Figure 14:

CONDENSATE DRAINAGE using Vertical Reservoir and Pump-Trap


PURPOSE: For drainage of condensate from below process equipment where fill head is limited due to height restrictions and a horizontal reservoir cannot be installed.

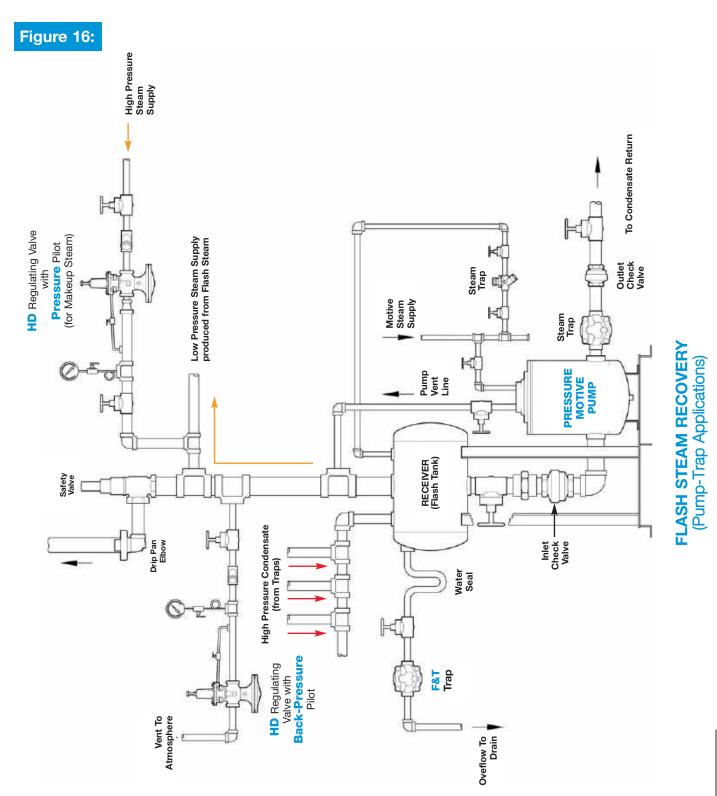
OPERATION: This system functions similarly to the system shown on page 455. However, when fill head is restricted due to heat exchanger height above ground, consider a vertical reservoir in lieu of a horizontal reservoir. This would accommodate condensate back-up as well as provide sufficient vapor space for the adequate venting of the pump while providing sufficient fill head to ensure proper operation of the pump.

INSTALLATION GUIDELINES: (see Figure 15)

- The vertical reservoir must be properly designed and installed to allow adequate condensate back-up during the pump's discharge cycle (i.e. when not filling), unobstructed venting of the pump, as well as sufficient fill head to ensure proper pump and system operation. Consult factory for additional assistance.
- Proper installation and piping of the pump vent line is critical to ensure the system operates correctly. Follow guidelines or consult factory for additional information.
- The steam trap after the pump must be sized in conjunction with the pump to ensure proper function as a system. Improper sizing may result in reduced capacity leading to condensate back-up, poor heat transfer and potentially dangerous waterhammer. Consult appropriate sections of this catalog or the factory for guidelines regarding proper sizing of the pump-trap combination.
- Low-cracking pressure (1/4 PSI opening pressure) check valves should be installed after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- The thermostatic air vent located on the heat exchanger promotes optimum heat transfer. The air vent
 improves heat-up times and overall heat transfer by expelling accumulated air on start-up. When properly
 sized and installed, the pump-trap combination can operate in sub-atmospheric (i.e. vacuum) conditions;
 therefore, a vacuum breaker should not be used.

CONDENSATE DRAINAGE using Vertical Reservoir and Pump-Trap

FLASH STEAM RECOVERY


PURPOSE: For recovering flash steam from multiple condensate sources and drainage of the condensate when the total system back pressure is greater than the total of the individual source pressures.

OPERATION: Condensate at various pressures collects in a receiver (flash tank), equalizing the pressures to that of the flash tank. This allows drainage by gravity into the Pressure Motive Pump (PMP), filling the PMP until the internal mechanism reaches its upper trip point and activates the motive steam used for pumping. The flash steam generated from the high pressure condensate may be used to supplement other applications for optimum energy efficiency. The pressure in the receiver tank is maintained by a back pressure regulator and protected by a safety relief valve.

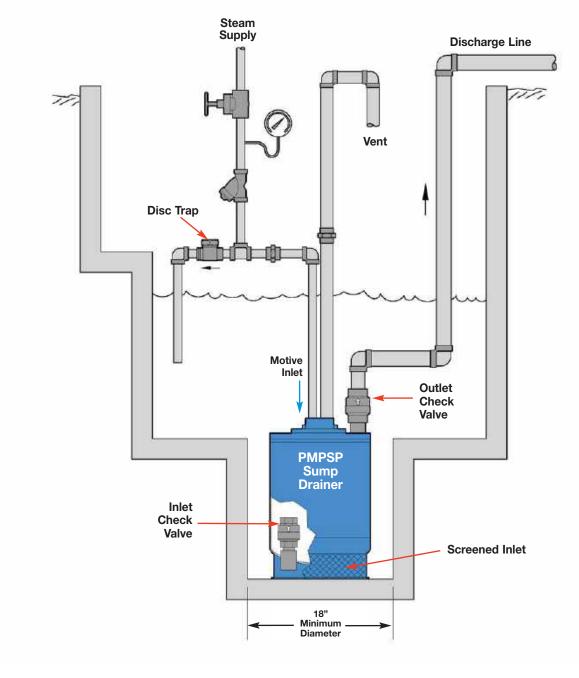
INSTALLATION GUIDELINES: (see Figure 16)

- The key element for proper system operation is the sizing of the receiver tank and receiver vent connection, which must accommodate the flash steam. Consult appropriate sections of this catalog or the factory for guidelines regarding proper sizing of the receiver tank and receiver vent connection.
- Proper installation and piping of the pump vent line is critical to ensure the system operates correctly. Follow guidelines or consult factory for additional information.
- Careful consideration should be given to sizing of the auxiliary components such as the back pressure regulator and safety relief valve.
- Maintain proper fill head above the top of the pump to ensure proper function of the pump and system. A suitably sized receiver or oversized piping should be installed ahead of the pump for accumulation of condensate during the pump's discharge cycle (i.e. when not filling).
- The steam trap after the pump must be sized in conjunction with the pump to ensure proper function as a system. Improper sizing may result in reduced capacity leading to condensate back-up, poor heat transfer and potentially dangerous waterhammer. Consult appropriate sections of this catalog or the factory for guidelines regarding proper sizing of the pump-trap combination.
- While the separator shown upstream is appropriate for protection of the PRV, it is not always required, as a
 properly sized drip leg with steam trap may be sufficient. It is recommended for systems where steam is known
 to be "wet" and the entrained moisture could affect valve performance and/or result in component damage.
- Low-cracking pressure (1/4 PSI opening pressure) check valves should be installed after steam traps when discharging into condensate return lines. Check valves eliminate the possibility of condensate backing up through the steam trap into the system.
- A safety relief valve (SRV) is appropriate where applicable codes dictate their requirement, or anywhere
 protection of downstream piping and equipment from over-pressurization is desired. Consult the factory for
 appropriate SRV sizing guidelines.

FLASH STEAM RECOVERY

REMOVAL OF WATER OR CONDENSATE FROM A PIT

PURPOSE: For drainage of water and condensate from collection pits – especially with minimal horizontal space.


OPERATION: Water enters the inlet check valve through a screened area at the bottom of the PMPSP Sump Drainer. After the pump fills, the internal mechanism is actuated and the water is discharged from the pump by motive steam or compressed air or other gas.

INSTALLATION GUIDELINES: (see Figure 17)

- Make certain vent line is unobstructed and allowed to discharge directly to atmosphere.
- Other compressed gases, such as nitrogen, may be used as a motive source.
- Pit diameter should be at least 18" to ensure proper installation and operation.
- Proper installation and piping of the pump vent line is critical to ensure the system operates correctly. Follow guidelines or consult factory for additional information.
- Note that liquid level in the pit must rise above the pump to allow proper function.

REMOVAL OF WATER OR CONDENSATE FROM A PIT

Figure 17: Sump Drainer: "The Pit Boss"

PMPSP Sump Drainer ("The Pit Boss")

Formulas for Heat Exchanger System using a Modulating Control Valve

Definition of Terms and Units:

- **E** = Mean Heat Transfer Rate or Heat Load (Btu/hr)
- E_{D} = Design Heat Load (Btu/hr)
- **U** = Overall Heat Transfer Coefficient (Btu/(hr-ft²-°F))
- **A** = Heat Transfer Surface Area of Heat Exchanger (ft²) T_{WM} = Mean Water Temperature (°F) = ($T_o + T_i$)/2
- ΔT_{M} = Mean Temperature Difference between Steam and Water (°F)
- Q_W = Volumetric Flow Rate of Water (GPM)
- **Q**_S = Steam Load or Steam Capacity (lbs/hr)
- C_p = Specific Heat Capacity of Water (Btu/(lb-°F))
- T_s = Saturated Steam Temperature (°F)
- T_B = Back pressure Equivalent Saturated Steam Temperature (°F)

- T_o = Outlet Water Temperature (°F)
- T_i = Inlet Water Temperature (°F)
- ΔT_W = Temperature Rise of Water (°F) = $T_o T_i$
- **LH** = Latent Heat of Saturated Steam (Btu/lb)
- **P**₁ = Control Valve Inlet Pressure (PSIA)
- P₂ = Control Valve Outlet Pressure (PSIA)
- ΔP = Control Valve Differential Pressure (PSI) = $P_1 P_2$
- **C**_v = Control Valve Flow Coefficient

Formula 1: Mean Heat Transfer Rate (E) of Heat Exchanger

$E = U A \Delta T_M$

The Heat Transfer Rate E (in Btu/hr) that takes place in a Heat Exchanger (HX) is a function of the Surface Area A (ft2). the average temperature difference ΔT_{M} (°F) between the steam and water, and the overall heat transfer coefficient U. The above formula can be used to calculate the heat loads for a HX based on the steam temperature inside the HX shell. This formula, when solved for A, can be used to size the HX (see Formula 2). Typical U values used for a steam to water HX range from 120 for stainless steel to over 200 for copper.

Formula 2: Heat Transfer Surface Area (A) of Heat Exchanger

$$A = \frac{E_D}{U \Delta T_M}$$

This formula is used to calculate the surface area (size) of the heat exchanger's internal tube or plates based on the design (maximum) heat load (E_D) and average temperature difference (ΔT_M) between the steam and water. Since ΔT_M is directly proportional to the steam pressure inside the HX shell, the specific steam pressure used to heat the water at E_{D} will determine the HX size. From the above formula, it can be seen that ΔT_{M} is inversely proportional to A (the surface area). Therefore, the higher the steam pressure, the smaller the HX size, and vice versa.

Formula 3: Mean Temperature Difference (ΔT_M) between Steam and Water

$$\Delta T_{M} = \frac{(T_{S} - T_{o}) + (T_{S} - T_{i})}{2}$$

This formula gives the average of the temperature differences between the steam and water at the outlet of the HX ($T_s - T_o$) and at the inlet of the HX ($T_s - T_i$).

Formula 4: Saturated Steam Temperature (Ts) as function of Mean Temperature Difference

$$T_s = \Delta T_M + T_{WM}$$
 Where, $T_{WM} = (T_0 + T_i)/2$

This formula is derived by solving Formula 3 for T_S. It is useful for determining the steam temperature when the mean temperature difference (ΔT_{M}) is known. For example, the steam temperature at minimum load can be determined by solving Formula 1 for ΔT_M when E = E_{min}, and then substituting ΔT_M into the above formula. Once T_S is known, the pressure inside the HX shell can be determined from the Saturated Steam Table.

Formula 5: Heat Load (E)

 $E = Q_w \times 500 \times C_p \times \Delta T_w = Q_w \times 500 \times (T_o - T_i)$ [$C_p = 1.0 \text{ Btu}/(\text{lb-}^{\circ}\text{F})$]

The above formula shows that the heat load for the HX depends on the water flow rate (Q_w) and the water temperature rise ($\Delta T_w = T_o - T_i$).

Formulas for Heat Exchanger System using a Modulating Control Valve

Formula 6: Steam Load (Qs) as function of Heat Load

$$Q_S = \frac{E}{LH}$$

The steam load or capacity (**Q**_S in lbs/hr) is dependent on the heat load (**E** in Btu/hr) and the latent heat (**LH** in Btu/lb) the steam contains. The Latent Heat of saturated steam is dependent on the steam pressure. Consult the Saturated Steam Table in Engineering Section. LH is typically approximated to 1,000 Btu/lb.

Formula 7: Steam Load (Q_S) as function of Water Flow Rate

 $Q_{S} = \frac{Q_{W} \times 500 \times (T_{o} - T_{i})}{LH}$ $Q_{S} = \frac{Q_{W} \times \Delta T_{W}}{2}$ (approximation for LH = 1,000 Btu/lb)

This formula is derived by substituting the right side of **Formula 5** for **E** in **Formula 6**. It can be used for calculating the steam load directly from the flow rate of water to be heated.

Formula 8: Water Flow Rate (Q_w) as function of Heat Load

$$Q_{W} = \frac{E}{500 \times (T_{o} - T_{i})}$$

This formula is derived by solving **Formula 5** for Q_w . It is useful for determining the water flow rate thru the HX at the stall point ($Q_{w-stall}$). This is explained in the following HX example (see part M).

Formula 9: Percent Stall Load

% Stall Load =
$$\frac{T_B - T_{WM}}{T_S - T_{WM}} \times 100$$
 Where $T_{WM} = \frac{T_0 + T_i}{2}$

This formula is used to calculate the percentage of Full Heat Load (E_D) at which heat exchanger stall will occur. Since water flow rate is proportional to heat load (see **Formula 8**), the % Stall Load can be used to calculate the water flow rate at stall (see **Formula 10**).

Formula 10: Water Flow Rate at Stall (Qw-stall)

Q_{w-stall} = Q_{w-full load} x (% Stall Load)/100

Where, $Q_{w-full load}$ = Water flow rate at design (maximum) heat load (E_D) = Maximum water flow rate

This formula is used in conjunction with **Formula 9** to calculate the water flow rate at which heat exchanger stall will occur without having to know the size of the HX.

Formula 11: Control Valve Steam Capacity (Q_S) at Sub-Critical Flow

For
$$\Delta P < 0.42 P_1$$
: 11a: $Q_S = 2.1 C_{v} \sqrt{\Delta P (P_1 + P_2)}$ 11b: $C_v = -2.5 C_v = -2.5 C_v$

 $E_v = \frac{Qs}{2.1 - \sqrt{\Delta P (P_1 + P_2)}}$

These formulas are applied when the pressure drop across the control valve (ΔP) is less than the critical pressure drop (**0.42** P₁).

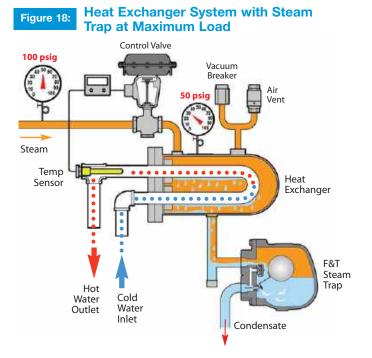
Formula 12: Control Valve Steam Capacity (Q_S) at Critical Flow

For
$$\Delta P \ge 0.42 P_1$$
: 12a: $Q_S = 1.71 C_V P_1$ 12b: $C_V = \frac{Q_S}{1.71 P_1}$

When the pressure drop across the valve (ΔP) is greater than or equal to the critical pressure drop (0.42 P₁), the steam capacity (Q_S) depends only on the valve inlet pressure (P_1). The flow rate at this condition is called the critical flow. For a constant inlet pressure, the critical flow is the maximum capacity of the valve. The above formulas are derived from Formula 11a by using the critical pressure drop ($\Delta P = 0.42 P_1$) and differential pressure ($\Delta P = P_1 - P_2$) formulas to eliminate ΔP and P_2 from the equation.

Note: Formulas 11 and 12 are simplified versions of the steam flow equation.

Heat Exchanger Example:


Heating Water with Steam using a Modulating Control Valve

Basic overview of system:

A shell and tube heat exchanger (**HX**) is used to heat 100 GPM of water from 50°F to 140°F using saturated steam at 100 PSIG to the inlet side of the control valve. A modulating control valve, in conjunction with a temperature sensor and electronic controller, is used to regulate the flow of steam into the HX. At the design load of 100 GPM, the valve will supply the HX with 50 PSIG steam. At times of lower demand, the flow rate of water can be reduced to a minimum of 25 GPM. The HX is constructed with stainless steel and has an overall heat transfer coefficient of 120 Btu/(hr-ft²-°F). The condensate produced from the condensing steam in the HX will drain thru a float-type steam trap located directly below the exchanger outlet and into a condensate return line with total back pressure of 10 PSIG.

OBJECTIVES: (see Figure 18)

- Select an appropriately sized HX that will effectively heat water from an estimated start temperature of 50°F to a final temperature of 140°F. The system must operate effectively in the flow rate range of 25 GPM to 100 GPM.
- **2)** Select the appropriately sized **Control Valve** to effectively deliver steam to the HX.
- **3)** Select the appropriately sized **Steam Trap** for draining condensate from the HX. The selection is based on steam pressure and condensate load in the HX.
- 4) Discuss advantages of using a Pumping Trap so the steam system can operate in vacuum during low demand, why a pumping trap may be a necessity if the condensate return line has back pressure or the condensate must be lifted after the HX, and how to select the proper size Pumping Trap.

HEAT EXCHANGER SIZING

The basic formula describing the heat transfer in a heat exchanger is $\mathbf{E} = \mathbf{U} \times \mathbf{A} \times \Delta \mathbf{T}_{M}$, where $\mathbf{E}(\text{Btu/hr})$ is the average heat transfer rate, \mathbf{U} is the overall heat transfer coefficient, $\mathbf{A}(\text{ft}^2)$ is the heat transfer surface area (size) of the HX and $\Delta \mathbf{T}_M$ is the average temperature difference between the steam and water being heated.

A) What is the design heat load (E_D) for this application?

The first step in sizing a HX is to calculate the maximum heat load (Btu/hr) required to heat the water. The design heat load (E_D) of the heat exchanger is the maximum heat load that needs to be transferred by the steam to the water based on the given conditions. The maximum heat load occurs at the maximum water flow, which is 100 GPM. Using *Formula 5*:

$E_{D} = Q_{w} \ge 500 \ge C_{p} \ge \Delta T_{w}$

- = 100 GPM x <u>500 lbs/hr</u> x 1.0 Btu/(lb-°F) x (140°F 50°F) 1 GPM
- = 50,000 lbs/hr x 1.0 Btu/(lb-°F) x 90°F
- = 4,500,000 Btu/hr

HEAT EXCHANGER FORMULAS & EXAMPLE Heating Water with Steam using a Modulating Control Valve

Healing water with steam using a Woaulating Control valve

B) What is the mean temperature difference (ΔT_M) between the steam and the water being heated?

From the HX formula we can see that in order to determine the size of the HX required to heat the water, we must first know the steam temperature (which is directly related to steam pressure) in the HX during the period of maximum demand. The steam pressure in the HX is dependent on the pressure drop across the control valve. **For optimal control in heating applications, it is typical to target a 50% pressure drop across the valve at the maximum steam load.** Therefore, at full load, the pressure drop across the control valve is 50 PSIG and the steam pressure supplied to the heat exchanger is also 50 PSIG.

As the steam (primary fluid) passes thru the heat exchanger, it transfers its latent heat energy to the water (secondary fluid) and condenses without a change in temperature. Therefore, the condensate leaving the heat exchanger is at the same temperature as the steam entering. From the saturated steam table, the steam temperature (T_s) of 50 PSIG saturated steam is 298°F. The water inlet temperature (T_i) is 50°F and the water outlet temperature (T_o) is 140°F.

We now have enough information to calculate the mean temperature difference between the steam (primary fluid) and water (secondary fluid). *Formula 3* is used to calculate the mean temperature difference (ΔT_M) which is the average of the temperature differences at both ends of the HX:

 $\Delta T_{M} = \frac{(T_{S} - T_{o}) + (T_{S} - T_{i})}{2} = \frac{(298 - 140) + (298 - 50)}{2} = \frac{158 + 248}{2} = \frac{406}{2} = 203^{\circ}F$

C) What is the Overall heat transfer coefficient (U) of the heat exchanger?

The U value of the HX depends on several factors, including type of HX, the quality of the steam used, if any fouling is expected, if the flow of water is turbulent or laminar, and the material of construction. The higher the U value, the better the heat transfer, and the smaller the HX needs to be. Typical U values range from 120 for a stainless steel HX to over 200 for copper. For this example, a Stainless Steel HX was selected for longevity purposes and so a U value of 120 will be used to determine the HX size.

D) What is the minimum heat transfer surface area (A) of the heat exchanger that can meet the design heat load?

The size of a HX is dependent on the steam pressure inside its shell. The higher the steam pressure, the smaller the HX for a given heat load. 50 PSIG was chosen because the supply pressure is 100 PSIG and this gives a 50% pressure drop across the control valve, as previously discussed. If a lower steam pressure is used, this would require a larger HX, and vice versa.

In a heat exchanger, the mean heat transfer rate is proportional to the mean temperature difference between the two fluids, as given by *Formula 1*. Rearranging this equation gives *Formula 2*, where **E** has been replaced by **E**_D, the design heat load. Using *Formula 2* and the mean temperature difference determined above, gives the heat transfer surface area:

$$A = \frac{E_{D}}{U \Delta T_{M}} = \frac{4,500,000 \text{ Btu/hr}}{120 \text{ Btu/(hr-ft^2-°F) x } 203°F} = 185 \text{ ft}^2$$

Therefore, for a perfectly sized heat exchanger, the heat transfer area of the tube is 185 square feet. In practice, the heat exchanger is usually oversized by at least 15% to account for fouling of the heating surfaces over time or to allow for an increase in the maximum heat load.

Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

CONTROL VALVE SIZING

E) What is the flow of steam (steam capacity) thru the control valve at the design heat load?

Formula 6 gives the mass flow rate of steam based on the heat load and the latent heat of saturated steam (LH). From the saturated steam table, the latent heat of 50 PSIG steam is 912 Btu/lb. Therefore, the steam capacity is:

Q_S = E_D / LH = 4,500,000 Btu/hr / 912 Btu/lb = 4,934 lbs/hr

F) How must the control valve be sized?

The valve must be sized for the <u>maximum steam capacity</u> of the application, which occurs at the maximum (design) heat load of the heat exchanger. We first need to determine if the pressure drop across the valve at the maximum flow rate is above or below the critical pressure drop, so that we can apply the correct formula:

Valve Inlet Pressure (P1) = Steam Supply Pressure = 100 PSIG + 14.7 = 114.7 PSIA

Valve Outlet Pressure (P2) = Heat Exchanger Pressure = 50 PSIG + 14.7 = 64.7 PSIA

Differential Pressure (\Delta P) = P_1 - P_2 = 114.7 - 64.7 = 50 PSI

Critical Pressure Drop (ΔP_{critical}) = 0.42 P₁ = 0.42 (114.7) = 48.2 PSI

Since the pressure drop across the valve (50 PSI) is greater than the critical pressure drop (48.2 PSI), the steam flow thru the valve is critical. Therefore, we apply *Formula 12b* to calculate the valve coefficient:

 $C_v = Q_s / (1.71 \times P_1) = 4,934 / (1.71 \times 114.7) = 4,934 / 196.1 = 25.2$

Therefore, the control valve must have a flow coefficient of at least 26.

G) What Watson-McDaniel Control Valve should be selected for this application?

Refer to the Control Valves section of this catalog. The Watson McDaniel **HB-Series 2-Way Pneumatic Control Valve** is used for heating and cooling applications. Since this is a heating application with steam, a Normally-Closed, Air-To-Open (ATO) valve should be selected. (This is a fail-safe feature in case the air signal to the valve actuator becomes interrupted. If the air signal is lost, the valve will automatically close and block the flow of steam.)

Referring to the HB Control Valve Selection chart, a full-port valve with Cv value of 42 should be selected. The Model Number for this valve with NPT ports is **HB-17-N-ATO**. This valve has a 2" NPT connection size, stainless steel body and trim, and a pressure-temperature rating of 300 PSIG @ 450°F.

HEAT EXCHANGER FORMULAS & EXAMPLE Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

H) What is the maximum close-off pressure of the control valve selected in Part G?

From the HB Control Valve Selection chart, the maximum close-off pressure for the selected valve is 85 PSI ΔP if no positioner is used, and 135 PSI ΔP if a positioner is used.

I) For the selected control valve, is a positioner required to completely shut off the flow of steam to the heat exchanger?

When the control valve is completely closed, the pressure drop across the valve is at its maximum value:

 ΔP_{MAX} = Steam Supply Pressure – Heat Exchanger Pressure

- = 100 PSIG 0 PSIG
- = 100 PSI

Thus, the control valve must have a close-off pressure capability of at least 100 PSI. Without a positioner, the maximum close-off pressure of the valve is 85 PSI. Therefore, a valve positioner is necessary to provide the required closing force to the actuator diaphragm.

In a normally-closed valve, the valve is held closed by a spring force. The spring pressure is set so that the valve will stay closed against an inlet pressure of 85 PSIG. The opening action is performed by the 3-15 PSIG air signal to the actuator diaphragm. When the air signal is 15 PSIG, the valve will completely open against the spring pressure. When the air signal is 3 PSIG, the valve will stay closed provided that the inlet pressure does not exceed 85 PSIG. If the inlet pressure exceeds 85 PSIG, the valve will open and a positioner will then be required to decrease the air signal pressure below 3 PSIG to allow the valve to fully close.

Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

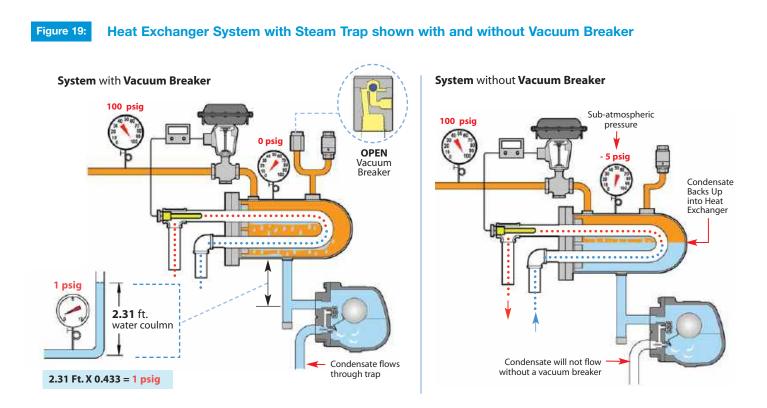
STEAM TRAP SIZING

J) What type and size of steam trap should be chosen for this application?

Initially we will assume that the condensate from the HX is being discharged to a condensate return line at atmospheric pressure (0 PSIG). At full-load, the steam pressure at the inlet of the trap is 50 PSIG. We have already calculated the maximum condensate load that would be generated at this pressure to be around 5,000 lbs/hr (see Part E). If this was the only set of conditions, selection of the steam trap would be fairly simple. We simply look at the capacity chart and choose a steam trap that will pass at least 5,000 lbs/hr at 50 PSI differential pressure. (See the capacity chart below for the FTE Series Float & Thermostatic steam traps.)

However, at different flow rates of water, the HX will have very different pressures. At a flow rate of ~58 GPM, the pressure in the HX drops to 0 PSIG and the HX is still producing condensate at the rate of ~2,700 lbs/hr. This condensate still needs to be drained from the HX but how can this happen with NO differential pressure? The purpose of having an extended drip leg under the HX is to give the trap a certain amount of head pressure. If the trap is mounted 14 inches below the HX, this will correspond to $\frac{1}{2}$ PSI of head pressure. The trap must then be able to pass at least 2,700 lbs/hr of condensate at $\frac{1}{2}$ PSI ΔP .

CAPACITIES – Condensate (lbs/hr)																			
	PMO	Pipe	Orifice	Differential Pressure (PSI)															
Model Code	(PSIG)	Size	Size	1/4	(1/2)	1	2	5	10	15	20	30	(50)	75	100	125	200	250	300
FTE-20-17-N*	20	2″	.937″	6100	7800	9300	11800	15900	19500	22500	26000								
FTE-50-17-N	50	2″	2.125″	12800	16900	20100	25300	33000	40200	43500	46000	47800	52500						
FTE-50-18-N	50	2 ¹ /2″	2.125″	20400	25700	31000	37000	46300	55100	60300	65100	72000	82100						
FTE-125-18-N	125	2 ¹ /2″	2.125″	20400	25700	31000	37000	46300	55100	60300	65100	72000	82100	90400	97700	105000			
FTE-200-16-N	200	1 1/2″	.375″	950	1350	1900	2200	2700	3300	3900	4400	5300	6400	7600	8500	9400	11900		
FTE-200-17-N	(200)	2″	.75″	2700	4100	5700	7400	9900	11800	13400	14400	16400	19000	21500	23000	24500	29200		
FTE-200-18-N	200	2 ¹ /2″	1.5″	7200	12300	17400	21500	27600	32600	36000	39300	43100	49200	54700	58800	61900	74000		
FTES-50-18-N	50	2 ¹ /2″	2.125″	20400	25700	31000	37000	46300	55100	60300	65100	72000	82100						
FTES-125-18-N	125	2 ¹ /2″	2.125″	20400	25700	31000	37000	46300	55100	60300	65100	72000	82100	90400	97700	105000			
FTES-300-18-N	300	2 ¹ /2″	1.5″	7200	12300	17400	21500	27600	32600	36000	39300	43100	49200	54700	58800	61900	74000	86000	100550


* Single seat orifice. All others are double seated.

As a general rule, for HX applications using steam pressures over 30 PSIG, the steam trap should be sized for 2.5X maximum condensate load at full differential pressure. Therefore, to provide an appropriate safety margin, we must select a trap that can pass $2.5 \times 5,000 = 12,500$ lbs/hr of condensate at 50 PSI Δ P. In addition, the steam trap must be able to handle the maximum possible inlet pressure which is 100 PSIG (the steam supply pressure). Referring to the FTE capacity chart above; the best trap to select is the **FTE-200-17-N**. This trap can pass 19,000 lbs/hr at 50 PSI Δ P and 4,100 lbs/hr at ½ PSI Δ P, which meets the above criteria.

HEAT EXCHANGER FORMULAS & EXAMPLE Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

Now, what happens when the water flow rate thru the HX reduces to the point that the steam pressure goes into vacuum? This occurs at water flow rates below about 58 GPM down to the minimum of 25 GPM. Since the HX will be operating in vacuum, the condensate would not effectively drain regardless of the steam trap size chosen. This is why a vacuum breaker must be added to the top of the HX. The vacuum breaker draws in air to neutralize the pressure in the HX which allows the condensate to drain (see Figure 19).

The HX can be properly drained using a steam trap as long as there is no BACK PRESSURE in the condensate return line. If there is back pressure in the condensate return line, a Pumping Trap must be used.

Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

PUMP-TRAP SIZING

K) If the condensate return line has a total back pressure of 10 PSIG, can a steam trap be used to drain the heat exchanger?

At full-load conditions, the steam pressure is 50 PSIG and the condensate load is ~5,000 lbs/hr. Since the total back pressure of the return line is 10 PSIG, the differential pressure across the steam trap is 40 PSI. An appropriately sized steam trap can handle this situation. However, when the steam pressure is reduced to 10 PSIG or lower, due to lower heat demand, the differential pressure across the steam trap will be 0 PSIG or less. Without positive differential pressure across the trap, the condensate cannot drain from the HX. During this situation, the condensate will back up into the HX shell. Therefore, a steam trap will not be effective in discharging condensate from the HX under **all** conditions.

L) If the water flow rate is reduced, less heat energy per unit of time is needed to heat the water and therefore the heat load will also reduce. This will cause a reduction in steam flow and pressure in the heat exchanger. If the steam pressure falls to or below the system back pressure, the condensate will begin to back up into the heat exchanger, causing the system to stall. Why is it important to prevent stall from occurring?

Condensate flooding the heat exchanger space will cause poor temperature control, accelerated corrosion and potentially damaging waterhammer. These factors can cause rapid or premature failure of the unit, leading to costly repairs and downtime.

M) For the heat exchanger size (surface area) calculated in Part D, what is the flow rate of water at which stall will occur?

We will use two methods to calculate the water flow rate at stall and then compare the two methods.

Method 1: Based on Heat Exchanger Size

Stall occurs at the point where the steam pressure equals the back pressure. The steam pressure at stall is therefore 10 PSIG. From the saturated steam table, this is equivalent to a steam temperature (**Ts**) of 239°F. *Formula 3* can now be used to calculate the mean temperature difference between the steam and water:

$$\Delta T_{M} = \frac{(T_{S} - T_{0}) + (T_{S} - T_{i})}{2} = \frac{(239 - 140) + (239 - 50)}{2} = \frac{99 + 189}{2} = \frac{288}{2} = 144^{\circ}F$$

The heat load at stall is then calculated from *Formula 1*:

Estall = U A ΔT_M = 120 Btu/(hr-ft²-°F) x 185 ft² x 144°F = 3,196,800 Btu/hr

Finally, the volumetric flow rate of water at stall is calculated from Formula 8:

$$Q_{w-stall} = E_{stall} / [500 x (T_o - T_i)]$$

$$= \frac{3,196,800}{[500 \times (140 - 50)]} = \frac{3,196,800}{(500 \times 90)} = \frac{3,196,800}{45,000}$$
$$= 71 \text{ GPM}$$

Method 2: Based on % Stall Load Formula

 T_{S} = Steam temperature at full-load = 298°F (50 PSIG steam)

 T_B = Back pressure equivalent saturated steam temperature = 239°F (10 PSIG steam)

$$T_{WM}$$
 = Mean water temperature = $\frac{T_0 - T_i}{2} = \frac{140 + 50}{2} = 95^{\circ}F_i$

Using Formula 9:

% Stall Load =
$$\frac{T_B - T_{WM}}{T_S - T_{WM}} \times 100 = \frac{239 - 95}{298 - 95} \times 100 = .71 \times 100 = 71\%$$

The water flow rate at stall is then calculated using Formula 10:

Qstall = Qw-full load x (% Stall Load)/100 = 100 GPM x 71/100 = 71 GPM

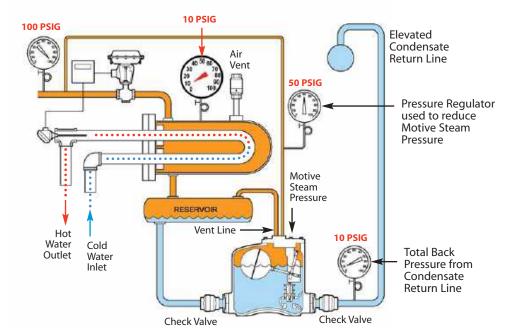
Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

Comparison of Methods:

Both methods gave the same result for the water flow rate at which stall will occur: 71 GPM. This means that at flows at or below 71 GPM, the steam pressure in the system is insufficient to push the condensate thru the steam trap and into the return line. The condensate will therefore back up into the heat exchanger unless something is done to prevent it.

The main difference between the two methods is that the heat exchanger size was needed to calculate the stall flow rate using **Method 1**, but not needed using **Method 2**.


N) How can stall (condensate back-up) be prevented?

Stall can be prevented by replacing the steam trap with a pump-trap (i.e., a pressure motive pump and steam trap combination). Pump-traps are available with either internal or external steam traps, depending on capacity requirements.

When there is sufficient steam pressure to push the condensate thru the trap, the pump is not used and the pumptrap is operating in **trap mode**. The condensate will pass thru the pump body and thru the trap. The trap must be sized to handle the condensate at full-load conditions as well as when the trap differential pressure is slightly above 0 PSI (i.e., just above the stall point). In addition, the orifice size of the trap should be optimized to handle the high instantaneous discharge flow rate when the pump is operating. This will reduce the discharge time of the pump and its overall fill/discharge cycle. Watson McDaniel pump-traps have the trap size optimized for all conditions.

When the steam pressure drops to or below the back pressure, the condensate will start to fill the pump tank. When the float in the tank reaches the upper trip point, the mechanism will open the steam valve while simultaneously closing the vent valve. High pressure steam will then force the condensate thru the trap and into the condensate return line. Check valves are used with the pump to prevent the backflow of condensate. When the pump is emptied, the float mechanism will then simultaneously close the steam valve and open the vent valve so the pump can fill on the next cycle. When the pump is being used, the pump-trap is operating in **pump mode**. The pump must be sized to handle the condensate load at the stall point. That is, when the steam pressure is equal to the back pressure.

When sizing Pressure Motive Pumps in closed-loop return systems, a condensate **reservoir** should be installed on the inlet side of the pump and below the HX, as shown in Figure 20. This will enable the condensate to collect while the pump is in the discharge cycle, thus preventing liquid backup into the HX. The reservoir should be located 12" above the top of the pump tank to provide adequate filling head. The reservoir must have sufficient size (volume) to provide adequate vapor space for the condensate to collect during the pump's discharge cycle and for the pump to vent during its filling cycle. The vent line also acts as a balancing line to allow condensate to drain into the pump tank while the HX is operating in vacuum.

Figure 20: Heat Exchanger System with Pump-Trap at Stall Load

Heat Exchanger Example:

Heating Water with Steam using a Modulating Control Valve

O) If a pump-trap is used to prevent stall, what capacity must the pump have?

The maximum condensate load that the pump must discharge occurs at the stall point (i.e., when the steam pressure is equal to the total back pressure of the condensate return line). This can be determined from the steam load at the stall point, using *Formula 6*. The heat load at stall was determined in Part M to be 3,196,800 Btu/hr. The steam temperature at stall was also determined in Part M to be 239°F. From the steam table, the latent heat of steam at 239°F is 953 Btu/lb. The steam capacity is:

Qs = Estall /LH = 3,196,800 Btu/hr / 953 Btu/lb = 3,354 lbs/hr

The maximum condensate load at stall conditions is therefore 3,354 lbs/hr and the pump must be sized to remove condensate at this rate.

P) What Watson-McDaniel Pump-Trap should be selected for this application?

Referring to the pump-trap capacity chart when operating in **Pump Mode**, it can be seen that model **WPT3** (pump with external trap mounted on common base) can meet the condensate load at stall (3,354 lbs/hr) when the motive steam pressure is 50 PSIG and the total back pressure is 10 PSIG. Under these conditions, this model has a maximum capacity of 4,080 lbs/hr. Since the steam supply pressure is 100 PSIG, a pressure regulator can be used to reduce the pressure to 50 PSIG for the motive steam line.

MINIMUM LOAD & OPERATION IN VACUUM

Q) What is the minimum heat load of the application?

The minimum heat load occurs at the minimum water flow of 25 GPM. Using Formula 5:

 $E_{min} = Q_w \times 500 \times C_p \times \Delta T_w$

= 25 GPM x <u>500 lbs/hr</u> x 1.0 Btu/(lb-°F) x (140°F – 50°F)

= 12,500 lbs/hr x 1.0 Btu/(lb-°F) x 90°F

= 1,125,000 Btu/hr

R) What is the steam temperature in the heat exchanger at the minimum load?

Use *Formula 1* to calculate the mean temperature difference between the steam and water:

ΔT_M = E_{min} /(U A) = 1,125,000 Btu/hr / (120 Btu/(hr-ft²-°F) x 185 ft²) = 50.7°F

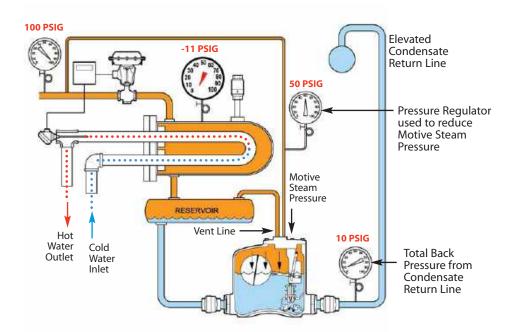
The steam temperature is then given by Formula 4:

 $\mathbf{T}_{S} = \Delta \mathbf{T}_{M} + \mathbf{T}_{WM} = \Delta \mathbf{T}_{M} + \underline{\mathbf{T}_{o} + \mathbf{T}_{i}} = 50.7 + \underline{140 + 50}{2} = 50.7 + \underline{190}{2} = 50.7 + 95 = \mathbf{146}^{\circ}\mathbf{F}$

S) What is the steam pressure in the heat exchanger at the minimum load?

From the steam table (using extrapolation), the steam pressure corresponding to 146°F saturated steam is 22.7 in Hg Vacuum which is equivalent to -11.1 PSIG. Therefore, the steam pressure inside the heat exchanger is below atmospheric pressure.

This is another advantage in the use of a pump-trap. If a steam trap is used to drain condensate, the system could not operate in vacuum since the condensate would never drain out. Therefore, a vacuum breaker is used which essentially mixes the steam with air to achieve the proper temperature differential for a particular size HX. This added air facilitates corrosion by forming carbonic acids. Some of this air is eventually discharged thru the air vent on top of the HX but some mixes with the condensate. A pump-trap can discharge condensate when the HX is operating in vacuum, which precludes the use of a vacuum breaker and thus air is prevented from entering the system.


Heating Water with Steam using a Modulating Control Valve

T) What is the flow of steam (steam capacity) thru the control valve at the minimum load?

From the steam table (using extrapolation), the latent heat of steam (LH) corresponding to 146°F saturated steam is 1,011 Btu/lb. Using *Formula 6*, the steam capacity is:

Qs = Emin /LH = 1,125,000 Btu/hr / 1,011 Btu/lb = 1,113 lbs/hr

Figure 21: Heat Exchanger System with Pump-Trap at Minimum Load

SUMMARY of HEAT EXCHANGER SYSTEM

The following table summarizes the above results and shows how the heat load and the pressure, temperature, latent heat and flow of steam vary as a function of the water flow rate. It can be seen that the system is operating in **Trap Mode** between water flow rates of 100 and 71 GPM, and in **Pump Mode** between 71 and 25 GPM. Also, at flow rates below ~58 GPM, the steam pressure inside the HX is below atmospheric pressure (0 PSIG).

Flow Rate Water (GPM)	Heat Load (Btu/hr)	Steam Usage (lbs/hr)	Steam Pressure in HX (PSIG)	Steam Temp in HX (°F)	Latent Heat of Steam (Btu/lb)	Condensate Generated (lbs/hr)	Trap Differential Pressure (PSI)	System Condition		
100	4,500,000	4,934	50	298	912	4,934	40		(Maximum Heat Load)	
94.7	4,262,400	4,633	40	287	920	4,633	30	Trap Mode		
88.3	3,973,800	4,278	30	274	929	4,278	20			
80.9	3,640,800	3,873	20	259	940	3,873	10			
71.0	3,196,800	3,354	10	239	953	3,354	0	(Stall Point)	Steam Pressure = Back Pressure	
57.7	2,597,400	2,678	0	212	970	2,678		Pump Mode	= Duck Flessole	
47.9	2,153,400	2,191	-5	192	983	2,191		(Vacuum)		
25	1,125,000	1,113	-11	146	1,011	1,113		(vacuum)	(Minimum Heat Load)	