Containment Solutions Equipment Design and Applications

Samuele Bissola

April 2014

FPS Food and Pharma Systems Organization

Head Quarter (Como - Italy)

- Administration
- Marketing
- o Sales

Engineering Plant - Italy

- Activities:
 - Project and Design
 - Manufacturing and Assembly
 - R&D Centre and QA Dept.
- 5000m² surface
- o 30 people

Worldwide agent network

• In Korea: Sanitary Equipment Korea

Pharmaceutical Processing

FPS Food and Pharma Systems Working "style"

Each situation has its own solution

We do not propose pre-defined solutions but solutions which correspond to end user needs

We always try to understand and know the needs, the history and the experience of our customers

The starting point of a project is not our machine but our customer need around which we build our systems

We are open to new ideas and challenges

We have a wide experience but we are learning something every day to improve our knowledge and face new challenges

Pharmaceutical Processing

FPS Food and Pharma Systems Product Range

Containment systems

- Isolators
 - Glove-boxes
 - Half-Suit isolators
- RABS
- LAF
- Down-Flow booths
- Pack-off systems
- Local Suction Arms

Pharmaceutical Processing

FPS Food and Pharma Systems Project Activities

- On-site preliminary discussion
- Front-end design
- Detail engineering
- Manufacturing
- Document review
- FAT

- Transport & installation
- SAT
- Validation (IQ/OQ)
- Maintenance and operator training
- Lifetime assistance

Containment Systems Equipment Design and Applications

Containment Introduction

Pharmaceutical Processing

Containment Systems Definitions

What is containment system?

Containment system ensures the separation between a specified work volume (internal environment) and surrounding space (external environment).

Why do we need containment system?

Containment system is needed to prevent any negative impacts from work volume and surrounding space (toxic application) and vice-versa (sterile application)

How do we define the containment system?

The most common value used in in the pharmaceutical industry is the Occupational Exposure Level (OEL).

Pharmaceutical Processing

Containment Systems Occupational Exposure Level

The Occupational Exposure Level is the limit on the acceptable concentration of a hazardous substance in a workplace air for a particular material or class of materials.

 $OEL = \frac{NOEL (mg/Kg/day) * BW (Kg)}{V (m^3/day) * S(days) * SF * \alpha *}$

NOEL=No Observable Effect Level = LD₅₀ * 0.00005 [mg/Kg/day]

- ▶ V = volume of air breathed in an 8 hour work day $[m^3] = (10 m^3)$
- S = time in days to achieve a plasma steady state = we will set 1
- SF = safety factor:
- \circ 10 x = using subchronic in lieu of chronic tox studies
- o 10 x =using animal data in lieu of human data
- \circ 10 x = intraspecies variation
- \circ 10 x = using estimation of the NOEL
- 10 x = if the substance is carcinogen and or teratogenic or sensitising

 $\triangleright \alpha$ = percent of compound absorbed from inhalation = 100

Pharmaceutical Processing

Containment Chart

Level	Range of OEL (µg/m³)	Containment strategy	Equipment
OEB1	> 1.000	LEV – Local Exhaust Ventilation	
OEB 2	100 – 1.000	LEV – Laminar Flow Booths	
OEB 3	10 - 100	Down cross containment booths	
OEB 4	1 - 10	Closed systems – RABS, barrier isolators	Q area
OEB 5	< 1	Closed handling within isolator, high containment devices	

Pharmaceutical Processing

Factors affecting Exposure Potential

Wet	Physical Form	Dry
Large	Particle Size	Small
Dense	Density	Light
Closed	Operation	Open
No Energy / Velocity	Process	High Energy/Velocity
None Required	Operator Skill	Highly Dependent
Low ∆ p	Pressure	High ∆p
None	Transfers	Multiple
Well	Training	Poorly
Well	Maintenance	Poorly
Routine	Task Type	Non Routine
One Operation	Frequency	Multiple Operation

Exposure Potential is also dependant on operator: in general up to 50% of containment performance is connected to isolator use.

Pharmaceutical Processing

Containment Systems The performance

The analysis to specify the design of the containment systems is based on Containment Performance Target (CPT). CPT is based on the OEL of the material handled.

The containment performance is defined as the airborne particulate concentration measured around the contaminated device and the operator.

The methodology for the evaluation is detailed in the ISPE guide "Good Practise – Assessing the particulate containment performance of pharmaceutical equipment", developed by the SMEPAC (Standardised Measurement of Equipment Particulate Airborne Concentration) Committee.

Pharmaceutical Processing

Containment Systems SMEPAC test

Containment performance verification following ISPE guideline during FAT and at end user site from approved third party

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Containment Solutions Leak tightness

Isolator tightness defined and assessed according ISO10648 and ISO14644-7

Table 1 — Classification of containment enclosures according to their hourly leak rate

Class	Hourly leak rate, T _f h ⁻¹	Example		
1*)	≤ 5 × 10 ⁻⁴	Containment enclosure with controlled atmosphere under inert gas conditions		
2 *)	< 2,5 × 10 ⁻³	Containment enclosure with controlled atmosphere under inert gas conditions or with permanently hazardous atmosphere		
3	< 10 ⁻²	Containment enclosure with permanently hazardous atmosphere		
4	< 10 ⁻¹	Containment enclosure with atmosphere which could be hazardous		
*) The classification of leak tightness required for a particular application under classes 1 and 2 shall be decided by the				

*) The classification of leak tightness required for a particular application under classes 1 and 2 shall be decided by the designer and user and licensing authorities. Normally, class 1 will be applied for technical reasons when higher gas purity is required.

When leak test is performed:

- FAT
- SAT
- After any maintenence, repair activity or operator need

Pharmaceutical Processing

Containment Solutions Leak measurement

Different methods:

- Oxygen method (class 1)
- Pressure change method (class 2 and 3)
- Constant pressure method (class 3 and 4)

Pressure change method:

- Easy to perform
- Not need specialized equipment
- Not need highly trained presonnel
- The test can be performed by itself

$$T_{\rm f} = \frac{60}{t} \times \left(\frac{p_{\rm n} T_{\rm 1}}{p_{\rm 1} T_{\rm n}} - 1\right)$$

Pharmaceutical Processing

Containment Solutions Leak detection

If the isolator leaks, we have to detect the sources

Leak detection methods

Soap solution

The test is exactly the same as applied to pneumatic tyres. Overpressurise and monitor all welds, gaskets, connections, ... The method is cheap, but messy

Helium

Isolator is pressurized to 100-200Pa with helium. An helium detector (sniffer) is used to search the leakage points We can detect 10ppm

Smoke test

Overpressurise and monitor all welds, gaskets, joint filter housing,

Pharmaceutical Processing

Containment Solutions Glove testing

Glove testing assure glove integrity. Automatic / Manual Glove tester:

- Available for different flange size/shape
- Sterile / Toxic application
- Fast response
- Easy to use
- Efficient

Glove breach test:

In the event of «worst case» (glove removal) isolator has to be able to guarantee a correct air flow. Guidancer value: 0,5m/s

Pharmaceutical Processing

Containment Systems: Design and Applications – April 2014

SEPS

Containment Systems Equipment Design and Applications

Containment Solutions

Pharmaceutical Processing

Containment Solutions Strategy Selection Chart

Pharmaceutical Processing

Containment Solutions Design Features

- Stainless Steel 316L construction following cGMP requirements
- FDA approved materials for not Stainless Steel parts
- Configuration for HPAPI or Sterile products activities
- Constant negative (positive) pressure working condition
- Transfer system available: Airlock
 / RTP / Endless Liner / Split Valve
- □ Full WIP / CIP / SIP available
- Electrical classified configuration
- Internal class to ISO5 / Class A / Self-draining floor Class 100 / Class M3.5
- OEL < 0.05µg/m³ 8h TWA (OEB5)
- Leak test following ISO10648-2 or AGS-2007 with 0.5% of Volume leak rate
- Sterility level below to 6log by VHP

Pharmaceutical Processing

Containment Solutions Project Development

Sterile dispensing and vessel charge

Pharmaceutical Processing

Containment Solutions Project Development

Tablet press and capsule filling machine integration

Pharmaceutical Processing

Contained Transfer Systems Pass-box

Pharmaceutical Processing

Contained Transfer Systems Rapid Transfer Ports (RTPs)

Container approach

Lock by rotation (60°)

Open the double door

Pharmaceutical Processing

Contained Transfer Systems Split Butterfly Valve

Pharmaceutical Processing

Contained Transfer Systems Continuous liner

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Contained Transfer Systems Hicoflex®

Pharmaceutical Processing

Contained Transfer Systems Ezi-Dock™

Pharmaceutical Processing

Containment Systems Equipment Design and Applications

Some Examples

Pharmaceutical Processing

Isolator Systems Laboratory Isolators

Stainless Steel isolators for:

- Weighting
- In Process Control
- Sampling
- Charging
- Discharging
- Sieving...

Pharmaceutical Processing

Isolator Systems Complete API lines

Isolator System for API Production Plants

- Synthesis
- □ Filtration
- □ Milling
- Dispensing
- Packing

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Isolator Systems Reactors for Synthesis

Different size and type of pilot reactors in glass or SS can be integrated in different way depending on reaction process steps

Pharmaceutical Processing

Isolator Systems Reactors for Synthesis

25-50litres reactors in glass or SS

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Isolator Systems Reactors Charging

Small and large production reactors can be interfaced with isolator for safe charging by gravity or by VTS

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Isolator Systems Tray Dryer

Tray dryer for pilot plant integrated with complete automation control

Tray dryer door open

Tray dryer door closed

Pharmaceutical Processing

Isolator Systems Filter Dryers (pilot plant)

Isolator Systems Filter Dryers (production plant)

Pharmaceutical Processing

Isolator Systems Milling and Micronization

FPS Multi-milling platform for R&D and Pilot Plants

- □ Cone-mill
- De Pin-mill
- □ Spiral jet mill
- Cryogenic milling

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Isolator Systems Milling and Micronization

Isolator Systems R&D Oral Forms line

Isolator Systems Oral Solid Forms processing

Pan Coating machine

In Process Control

<u>Pharmaceutical Processing</u> Containment Systems: Design and Applications – April 2014

Isolator Systems Oral Solid Forms processing

Capsule filling machine Overview

Pharmaceutical Processing

Isolator Systems Oral Solid Forms processing

OEB5 Blistering machine

Isolator Systems RABS for Sterile Lines

A Restricted Access Barrier System (RABS) is defined as: "An aseptic processing system that provide and enclosed, but not closed, environment meeting Grade 5 conditions Powder dosing unit utilizing a rigid wall-enclosure and air overspill to separate its interior from the surrounding environment"

Vials filling line

Pharmaceutical Processing

Isolator Systems Sterile Isolators

Isolators integrated for sterile operations:

- Dispensing and vessel charging
- Caps washer and sterilizers

Sterile tank charging

Pharmaceutical Processing

Isolator Systems Glove tester

Automatic / Manual Glove tester:

- Efficient
- Fast response
- Easy to use
- Available for different flange size/shape
- Sterile / Toxic application

Pharmaceutical Processing

Final Notes and References

FPS has set up a small library collecting articles and documents specific on containment.

In the preceding pages we made reference to:

Assessing the Particulate Containment Performance of Pharmaceutical Equipment - ISPE

• Containment Systems – a Dseign Guide – IChemE Guide 2002

If you are interested, we can share our bibliography as regards specific subjects: let's stay in contact.

Thank you for your attention!

Pharmaceutical Processing